BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23939304)

  • 21. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease.
    Ge P; Dawson VL; Dawson TM
    Mol Neurodegener; 2020 Mar; 15(1):20. PubMed ID: 32169097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Parkin and mitochondria].
    Mitsui T; Kuroda Y; Kaji R
    Brain Nerve; 2008 Aug; 60(8):923-9. PubMed ID: 18717196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial dysfunction in genetic animal models of Parkinson's disease.
    Trancikova A; Tsika E; Moore DJ
    Antioxid Redox Signal; 2012 May; 16(9):896-919. PubMed ID: 21848447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease.
    Pilsl A; Winklhofer KF
    Acta Neuropathol; 2012 Feb; 123(2):173-88. PubMed ID: 22057787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin.
    Exner N; Treske B; Paquet D; Holmström K; Schiesling C; Gispert S; Carballo-Carbajal I; Berg D; Hoepken HH; Gasser T; Krüger R; Winklhofer KF; Vogel F; Reichert AS; Auburger G; Kahle PJ; Schmid B; Haass C
    J Neurosci; 2007 Nov; 27(45):12413-8. PubMed ID: 17989306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PINK1 protein in normal human brain and Parkinson's disease.
    Gandhi S; Muqit MM; Stanyer L; Healy DG; Abou-Sleiman PM; Hargreaves I; Heales S; Ganguly M; Parsons L; Lees AJ; Latchman DS; Holton JL; Wood NW; Revesz T
    Brain; 2006 Jul; 129(Pt 7):1720-31. PubMed ID: 16702191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Michael J. Fox Foundation for Parkinson's Research Strategy to Advance Therapeutic Development of PINK1 and Parkin.
    Padmanabhan S; Polinski NK; Menalled LB; Baptista MAS; Fiske BK
    Biomolecules; 2019 Jul; 9(8):. PubMed ID: 31344817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Parkinson's disease: what have we learned from the genes responsible for familial forms?].
    Corti O; Brice A
    Med Sci (Paris); 2003 May; 19(5):613-9. PubMed ID: 12836396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease.
    Corti O; Brice A
    Curr Opin Neurobiol; 2013 Feb; 23(1):100-8. PubMed ID: 23206589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss.
    Biosa A; Sanchez-Martinez A; Filograna R; Terriente-Felix A; Alam SM; Beltramini M; Bubacco L; Bisaglia M; Whitworth AJ
    Hum Mol Genet; 2018 May; 27(9):1618-1629. PubMed ID: 29529199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The role of parkin in Parkinson's disease].
    Miklya I; Göltl P; Hafenscher F; Pencz N
    Neuropsychopharmacol Hung; 2014 Jun; 16(2):67-76. PubMed ID: 24978049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson's disease.
    Yasuda T; Mochizuki H
    Apoptosis; 2010 Nov; 15(11):1312-21. PubMed ID: 20221696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular insights into Parkinson's disease.
    Rochet JC; Hay BA; Guo M
    Prog Mol Biol Transl Sci; 2012; 107():125-88. PubMed ID: 22482450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic mutations and functions of PINK1.
    Kawajiri S; Saiki S; Sato S; Hattori N
    Trends Pharmacol Sci; 2011 Oct; 32(10):573-80. PubMed ID: 21784538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation mechanisms of the E3 ubiquitin ligase parkin.
    Panicker N; Dawson VL; Dawson TM
    Biochem J; 2017 Aug; 474(18):3075-3086. PubMed ID: 28860335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice.
    Khang R; Park C; Shin JH
    Neuroscience; 2015 May; 294():182-92. PubMed ID: 25779963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease.
    Dave KD; De Silva S; Sheth NP; Ramboz S; Beck MJ; Quang C; Switzer RC; Ahmad SO; Sunkin SM; Walker D; Cui X; Fisher DA; McCoy AM; Gamber K; Ding X; Goldberg MS; Benkovic SA; Haupt M; Baptista MA; Fiske BK; Sherer TB; Frasier MA
    Neurobiol Dis; 2014 Oct; 70():190-203. PubMed ID: 24969022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitin-proteasome system and Parkinson's diseases.
    Betarbet R; Sherer TB; Greenamyre JT
    Exp Neurol; 2005 Feb; 191 Suppl 1():S17-27. PubMed ID: 15629758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson's disease.
    Ahlskog JE
    Parkinsonism Relat Disord; 2009 Dec; 15(10):721-7. PubMed ID: 19815446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.