BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23939660)

  • 1. Understanding the impacts of allocation approaches during process-based life cycle assessment of water treatment chemicals.
    Alvarez-Gaitan JP; Peters GM; Short MD; Schulz M; Moore S
    Integr Environ Assess Manag; 2014 Jan; 10(1):87-94. PubMed ID: 23939660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for improving reliability and relevance of LCA reviews: the case of life-cycle greenhouse gas emissions of tap and bottled water.
    Fantin V; Scalbi S; Ottaviano G; Masoni P
    Sci Total Environ; 2014 Apr; 476-477():228-41. PubMed ID: 24463258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature.
    Cleary J
    Environ Int; 2009 Nov; 35(8):1256-66. PubMed ID: 19682746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated environmental assessment of tertiary and residuals treatment--LCA in the wastewater industry.
    Beavis P; Lundie S
    Water Sci Technol; 2003; 47(7-8):109-16. PubMed ID: 12793669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life-cycle assessment as an environmental management tool in the production of potable water.
    Friedrich E
    Water Sci Technol; 2002; 46(9):29-36. PubMed ID: 12448449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diverse environmental burden of city-scale urban water systems.
    Lane JL; de Haas DW; Lant PA
    Water Res; 2015 Sep; 81():398-415. PubMed ID: 26164544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.
    Heimersson S; Morgan-Sagastume F; Peters GM; Werker A; Svanström M
    N Biotechnol; 2014 Jun; 31(4):383-93. PubMed ID: 24121250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method.
    Lo SC; Ma HW; Lo SL
    Sci Total Environ; 2005 Mar; 340(1-3):23-33. PubMed ID: 15752490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach.
    Garcia-Herrero I; Margallo M; Onandía R; Aldaco R; Irabien A
    Sci Total Environ; 2017 Feb; 580():147-157. PubMed ID: 27955969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of three water systems in Copenhagen--a management tool of the future.
    Godskesen B; Zambrano KC; Trautner A; Johansen NB; Thiesson L; Andersen L; Clauson-Kaas J; Neidel TL; Rygaard M; Kløverpris NH; Albrechtsen HJ
    Water Sci Technol; 2011; 63(3):565-72. PubMed ID: 21278481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.
    Loubet P; Roux P; Loiseau E; Bellon-Maurel V
    Water Res; 2014 Dec; 67():187-202. PubMed ID: 25282088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources.
    Muñoz I; Fernández-Alba AR
    Water Res; 2008 Feb; 42(3):801-11. PubMed ID: 17826817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of the effects of chlorine dioxide, sodium hypochlorite and their combination on simulative water disinfection].
    Wang Y; Li N; Lu Y; Wang Y
    Wei Sheng Yan Jiu; 2008 May; 37(3):285-9. PubMed ID: 18646523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8182-9. PubMed ID: 21846117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants.
    Ribera G; Clarens F; Martínez-Lladó X; Jubany I; V Martí ; Rovira M
    Sci Total Environ; 2014 Jan; 466-467():377-86. PubMed ID: 23917380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing environmental impacts of tertiary wastewater treatment technologies for advanced phosphorus removal and disinfection with life cycle assessment.
    Remy C; Miehe U; Lesjean B; Bartholomäus C
    Water Sci Technol; 2014; 69(8):1742-50. PubMed ID: 24759537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Market-driven emissions from recovery of carbon dioxide gas.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2014 Dec; 48(24):14615-23. PubMed ID: 25412142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data.
    Peters GP; Aamaas B; T Lund M; Solli C; Fuglestvedt JS
    Environ Sci Technol; 2011 Oct; 45(20):8633-41. PubMed ID: 21936535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of pinch analysis to water, reagent and effluent management in a chlor-alkali facility.
    Gianadda P; Brouckaert CJ; Sayer R; Buckley CA
    Water Sci Technol; 2002; 46(9):21-8. PubMed ID: 12448448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and economic profile of six typologies of wastewater treatment plants.
    Rodriguez-Garcia G; Molinos-Senante M; Hospido A; Hernández-Sancho F; Moreira MT; Feijoo G
    Water Res; 2011 Nov; 45(18):5997-6010. PubMed ID: 21943567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.