These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23939671)

  • 1. Compensation of inhomogeneous fluorescence signal distribution in 2D images acquired by confocal microscopy.
    Michálek J; Capek M; Kubínová L
    Microsc Res Tech; 2011 Sep; 74(9):831-8. PubMed ID: 23939671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for compensation of the light attenuation with depth of images captured by a confocal microscope.
    Capek M; Janácek J; Kubínová L
    Microsc Res Tech; 2006 Aug; 69(8):624-35. PubMed ID: 16741977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration.
    Capek M; Brůza P; Janácek J; Karen P; Kubínová L; Vagnerová R
    Microsc Res Tech; 2009 Feb; 72(2):110-9. PubMed ID: 19003887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity correction of fluorescent confocal laser scanning microscope images by mean-weight filtering.
    Lee SC; Bajcsy P
    J Microsc; 2006 Feb; 221(Pt 2):122-36. PubMed ID: 16499551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated compensation of light attenuation in confocal microscopy by exact histogram specification.
    Stanciu SG; Stanciu GA; Coltuc D
    Microsc Res Tech; 2010 Mar; 73(3):165-75. PubMed ID: 19725065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal DNA cytometry: a contour-based segmentation algorithm for automated three-dimensional image segmentation.
    Beliën JA; van Ginkel HA; Tekola P; Ploeger LS; Poulin NM; Baak JP; van Diest PJ
    Cytometry; 2002 Sep; 49(1):12-21. PubMed ID: 12210606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal multiresolution blending of confocal microscope images.
    Shao HC; Hwang WL; Chen YC
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):531-41. PubMed ID: 22084042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphoton fluorescent images with a spatially varying background signal: a ML deconvolution method.
    Crivaro M; Enjieu-Kadji H; Hatanaka R; Nakauchi S; Bosch J; Judin J; Riera J; Kawashima R
    J Microsc; 2011 Jun; 242(3):311-24. PubMed ID: 21143230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.
    Calapez A; Rosa A
    IEEE Trans Image Process; 2010 Sep; 19(9):2408-18. PubMed ID: 20363677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic noise quantification for confocal fluorescence microscopy images.
    Paul P; Duessmann H; Bernas T; Huber H; Kalamatianos D
    Comput Med Imaging Graph; 2010 Sep; 34(6):426-34. PubMed ID: 20462738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical aspects of quantitative confocal microscopy.
    Murray JM
    Methods Cell Biol; 2013; 114():427-40. PubMed ID: 23931517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-step procedure for automatic and accurate segmentation of volumetric CLSM biofilm images.
    Yerly J; Hu Y; Jones SM; Martinuzzi RJ
    J Microbiol Methods; 2007 Sep; 70(3):424-33. PubMed ID: 17618700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment of confocal scanning laser ophthalmoscopy photoreceptor images at different polarizations using complex phase relationships.
    Wong A
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1831-7. PubMed ID: 19336279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonrigid registration of CLSM images of physical sections with discontinuous deformations.
    Michálek J; Capek M; Kubínová L
    Microsc Microanal; 2011 Dec; 17(6):923-36. PubMed ID: 22047716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of phase correlation to the montage synthesis and three-dimensional reconstruction of large tissue volumes from confocal laser scanning microscopy.
    Slamani MA; Krol A; Beaumont J; Price RL; Coman IL; Lipson ED
    Microsc Microanal; 2006 Apr; 12(2):106-12. PubMed ID: 17481346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal and noise modeling in confocal laser scanning fluorescence microscopy.
    Herberich G; Windoffer R; Leube RE; Aach T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):381-8. PubMed ID: 23285574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Image reconstruction of the corneal subbasal nerve plexus with extended field of view from focus image stacks of a confocal laser scanning microscope].
    Köhler B; Allgeier S; Eberle F; Guthoff R; Maier S; Stachs O; Zhivov A; Ziegler D; Bretthauer G
    Klin Monbl Augenheilkd; 2011 Dec; 228(12):1060-6. PubMed ID: 22167357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of confocal laser scanning microscopy (CLSM) to visualize prolactin (PRL) and PRL mRNA in the normal and estrogen-treated rat pituitary glands using non-fluorescent probes.
    Itoh J; Sanno N; Matsuno A; Itoh Y; Watanabe K; Osamura RY
    Microsc Res Tech; 1997 Oct; 39(2):157-67. PubMed ID: 9361267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A contour map segmentation for laser scanning confocal microscopic biomedical images].
    Luo D; He X; Wu X; Teng Q; Wu X; Tao D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):500-3. PubMed ID: 11791291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy.
    Ancin H; Roysam B; Dufresne TE; Chestnut MM; Ridder GM; Szarowski DH; Turner JN
    Cytometry; 1996 Nov; 25(3):221-34. PubMed ID: 8914819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.