BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23939689)

  • 1. Sodium ions template the formation of rotaxanes from BPX26C6 and nonconjugated amide and urea functionalities.
    Lin YH; Lai CC; Liu YH; Peng SM; Chiu SH
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10231-6. PubMed ID: 23939689
    [No Abstract]   [Full Text] [Related]  

  • 2. Rotaxanes synthesized through sodium-ion-templated clipping of macrocycles around nonconjugated amide and urea functionalities.
    Ho TH; Lai CC; Liu YH; Peng SM; Chiu SH
    Chemistry; 2014 Apr; 20(16):4563-7. PubMed ID: 24633811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Five additional macrocycles that allow Na+ ion-templated threading of guest units featuring a single urea or amide functionality.
    Lin YH; Lai CC; Chiu SH
    Org Biomol Chem; 2014 May; 12(18):2907-17. PubMed ID: 24676312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ ion templated threading of oligo(ethylene glycol) chains through BPX26C6 allows synthesis of [2]rotaxanes under solvent-free conditions.
    Wu KD; Lin YH; Lai CC; Chiu SH
    Org Lett; 2014 Feb; 16(4):1068-71. PubMed ID: 24499390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirality transcription and amplification by [2]pseudorotaxanes.
    Kuwahara S; Chamura R; Tsuchiya S; Ikeda M; Habata Y
    Chem Commun (Camb); 2013 Mar; 49(22):2186-8. PubMed ID: 23318978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A redox-controllable molecular switch based on weak recognition of BPX26C6 at a diphenylurea station.
    Chang JC; Lai CC; Chiu SH
    Molecules; 2015 Jan; 20(2):1775-87. PubMed ID: 25621422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular switch based on very weak association between BPX26C6 and two recognition units.
    Lu TW; Chang CF; Lai CC; Chiu SH
    Org Lett; 2013 Nov; 15(22):5742-5. PubMed ID: 24171404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetraphenylethene modified [n]rotaxanes: synthesis, characterization and aggregation-induced emission behavior.
    Liu G; Wu D; Liang J; Han X; Liu SH; Yin J
    Org Biomol Chem; 2015 Apr; 13(13):4090-100. PubMed ID: 25740623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotaxanes with fluorocarbon blocking groups.
    Mahan EJ; Dennis JA
    Org Lett; 2006 Oct; 8(22):5085-8. PubMed ID: 17048849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parking and restarting a molecular shuttle in situ.
    Chen NC; Lai CC; Liu YH; Peng SM; Chiu SH
    Chemistry; 2008; 14(9):2904-8. PubMed ID: 18213659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane.
    Chao S; Romuald C; Fournel-Marotte K; Clavel C; Coutrot F
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6914-9. PubMed ID: 24910397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weakly associated TFPB anions are superior to PF6 anions when preparing (pseudo)rotaxanes from crown ethers and secondary dialkylammonium ions.
    Chen NC; Chuang CJ; Wang LY; Lai CC; Chiu SH
    Chemistry; 2012 Feb; 18(7):1896-900. PubMed ID: 22249948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the molecular recognition of "three methylene spacer" bis(benzimidazolium) moiety by dibenzo-24-crown-8: pseudorotaxanes under study.
    Mukhopadhyay C; Ghosh S; Schmiedekamp AM
    Org Biomol Chem; 2012 Feb; 10(7):1434-9. PubMed ID: 22212620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands.
    Davidson GJ; Loeb SJ
    Angew Chem Int Ed Engl; 2003 Jan; 42(1):74-7. PubMed ID: 19757595
    [No Abstract]   [Full Text] [Related]  

  • 15. A [2]rota[2]catenane, constructed from a pillar[5]arene-crown ether fused double-cavity macrocycle: synthesis and structural characterization.
    Hu WB; Hu WJ; Zhao XL; Liu YA; Li JS; Jiang B; Wen K
    Chem Commun (Camb); 2015 Sep; 51(73):13882-5. PubMed ID: 26225550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic Analysis of Allosteric and Chelate Cooperativity in Di- and Trivalent Ammonium/Crown-Ether Pseudorotaxanes.
    Nowosinski K; von Krbek LK; Traulsen NL; Schalley CA
    Org Lett; 2015 Oct; 17(20):5076-9. PubMed ID: 26440053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel triptycene-based cylindrical macrotricyclic host: synthesis and complexation with paraquat derivatives.
    Zong QS; Chen CF
    Org Lett; 2006 Jan; 8(2):211-4. PubMed ID: 16408877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Click' functionalised polymer resins: a new approach to the synthesis of surface attached bipyridinium and naphthalene diimide [2]rotaxanes.
    Wilson H; Byrne S; Bampos N; Mullen KM
    Org Biomol Chem; 2013 Apr; 11(13):2105-15. PubMed ID: 23380978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three protocols for the formation of a [3]pseudorotaxane via orthogonal cryptand-based host-guest recognition and coordination-driven self-assembly.
    Li J; Wei P; Wu X; Xue M; Yan X
    Org Lett; 2013 Oct; 15(19):4984-7. PubMed ID: 24059808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of heterofunctional groups onto molecular hexagons via coordination-driven self-assembly.
    Ghosh K; Hu J; Yang HB; Northrop BH; White HS; Stang PJ
    J Org Chem; 2009 Jul; 74(13):4828-33. PubMed ID: 19485351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.