These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2393971)
1. Chemical modification by 2,4,6-trinitrobenzenesulfonic acid (TNBS) of an essential amino group in 3-ketovalidoxylamine A C-N lyase. Takeuchi M; Neyazaki K; Matsui K Chem Pharm Bull (Tokyo); 1990 May; 38(5):1419-20. PubMed ID: 2393971 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification by diethylpyrocarbonate of an essential histidine residue in 3-ketovalidoxylamine A C-N lyase. Takeuchi M; Asano N; Kameda Y; Matsui K J Biochem; 1986 Jun; 99(6):1571-7. PubMed ID: 3745136 [TBL] [Abstract][Full Text] [Related]
3. Purification and properties of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum. Takeuchi M; Asano N; Kameda Y; Matsui K J Biochem; 1985 Dec; 98(6):1631-8. PubMed ID: 4093450 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of rat testicular NADPH-cytochrome P-450 reductase by 2,4,6-trinitrobenzenesulfonate. Inano H; Kurihara S; Tamaoki B J Steroid Biochem; 1988 Feb; 29(2):227-32. PubMed ID: 3126367 [TBL] [Abstract][Full Text] [Related]
5. Preparation of 3-ketovalidoxylamine A C-N lyase substrate: N-p-nitrophenyl-3-ketovalidamine by Stenotrophomonas maltrophilia CCTCC M 204024. Zhang JF; Zheng YG; Liu ZQ; Shen YC Appl Microbiol Biotechnol; 2007 Jan; 73(6):1275-81. PubMed ID: 17058074 [TBL] [Abstract][Full Text] [Related]
6. Studies on phosphoglyceromutase from chicken breast muscle: chemical modification of lysyl residues. Carne TJ; Flynn TG Can J Biochem; 1977 Aug; 55(8):856-64. PubMed ID: 196726 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of 3-ketovalidoxylamine A C-N lyase produced by Stenotrophomonas maltrophilia. Zhang JF; Zheng YG; Shen YC Appl Biochem Biotechnol; 2010 Oct; 162(4):966-74. PubMed ID: 19795222 [TBL] [Abstract][Full Text] [Related]
8. [Specific modification of free lysine amino groups of histidine decarboxylase from Micrococcus sp. n. by trinitrobenzene sulfonic acid]. Semina LA; Gonchar NA; Kharitonenkov IG; Grebenshchikova OG Biokhimiia; 1976 Dec; 41(12):2212-9. PubMed ID: 1022283 [TBL] [Abstract][Full Text] [Related]
9. Chemical modification of sodium channel surface charges in frog skeletal muscle by trinitrobenzene sulphonic acid. Cahalan MD; Pappone PA J Physiol; 1981 Dec; 321():127-39. PubMed ID: 6279821 [TBL] [Abstract][Full Text] [Related]
10. Interaction of lysine residues with the metal thiolate clusters in metallothionein. Pande J; Vasák M; Kägi JH Biochemistry; 1985 Nov; 24(23):6717-22. PubMed ID: 3936544 [TBL] [Abstract][Full Text] [Related]
11. Phosphoenolpyruvate carboxylase of Escherichia coli. The role of lysyl residues in the catalytic and regulatory functions. Naide A; Izui K; Yoshinaga T; Katsuki H J Biochem; 1979 Feb; 85(2):423-32. PubMed ID: 370110 [TBL] [Abstract][Full Text] [Related]
12. Modification and inactivation of rhodanese by 2,4,6-trinitrobenzenesulphonic acid. Malliopoulou TB; Rakitzis ET J Enzyme Inhib; 1988; 2(2):99-115. PubMed ID: 3236071 [TBL] [Abstract][Full Text] [Related]
13. Trinitrophenylation of bovine growth hormone. Biscoglio de Jimenez Bonino MJ; Cascone O; Santomé JA Int J Pept Protein Res; 1979 Aug; 14(2):107-12. PubMed ID: 489250 [TBL] [Abstract][Full Text] [Related]
14. Kinetic study of the reaction between trinitrobenzenesulfonic acid and amino acids with a trinitrobenzenesulfonate ion-selective electrode. Sarantonis EG; Diamandis EP; Karayannis MI Anal Biochem; 1986 May; 155(1):129-34. PubMed ID: 3717549 [TBL] [Abstract][Full Text] [Related]
15. Modification of the allosteric activator site of Escherichia coli ADP-glucose synthetase by trinitrobenzenesulfonate. Carlson CA; Preiss J Biochemistry; 1981 Dec; 20(26):7519-28. PubMed ID: 6275883 [TBL] [Abstract][Full Text] [Related]
16. Conformation and microenvironment of the active site of a low molecular weight 1,4-beta-D-glucan glucanohydrolase from an alkalothermophilic Thermomonospora sp.: involvement of lysine and cysteine residues. Jagtap S; Rao M Biochem Biophys Res Commun; 2006 Aug; 347(2):428-32. PubMed ID: 16828055 [TBL] [Abstract][Full Text] [Related]
17. Identification of a critical lysine residue at the active site in glyceraldehyde-3-phosphate dehydrogenase of Ehrlich ascites carcinoma cell. Comparison with the rabbit muscle enzyme. Ghosh S; Mukherjee K; Ray M; Ray S Eur J Biochem; 2001 Dec; 268(23):6037-44. PubMed ID: 11732997 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of glyoxalase I from porcine erythrocytes and yeast by amino-group reagents. Mannervik B; Marmstål E; Ekwall K; Górna-Hall B Eur J Biochem; 1975 May; 53(2):327-33. PubMed ID: 237756 [TBL] [Abstract][Full Text] [Related]
20. Pyruvate carboxylase: effect of reaction components and analogues of acetyl-coenzyme A on the rate of inactivation in the presence and absence of trinitrobenzene sulphonate. Scrutton MC; Pearce PH; Fatebene F Eur J Biochem; 1977 Jun; 76(1):219-31. PubMed ID: 18350 [No Abstract] [Full Text] [Related] [Next] [New Search]