These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2393971)

  • 21. Chemical modification of lysine residues at active-site of human placental estradiol 17 beta-dehydrogenase.
    Inano H
    Biochem Biophys Res Commun; 1988 Apr; 152(2):789-93. PubMed ID: 3130054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of lysine modification on the activity of the sigma subunit of Escherichia coli RNA polymerase.
    Narayanan CS; Krakow JS
    Biochemistry; 1982 Nov; 21(24):6103-11. PubMed ID: 6817785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of pigeon liver fatty acid synthetase by specific modification of lysine residues with 2,4,6-trinitrobenzenesulphonic acid.
    Mukherjee S; Katiyar SS
    J Enzyme Inhib; 2000; 15(4):421-7. PubMed ID: 10995072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Differential interaction of 2,4,6-trinitrobenzenesulfonic (TNBS) and 2,4-dinitrobenzenesulfonic (DNBS) acids on mouse lymphocytes].
    Vaillier D; Vaillier J; Donner M
    C R Seances Acad Sci D; 1979 Jul; 289(2):185-7. PubMed ID: 117922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical modification of potassium channel gating in frog myelinated nerve by trinitrobenzene sulphonic acid.
    Cahalan MD; Pappone PA
    J Physiol; 1983 Sep; 342():119-43. PubMed ID: 6313907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorometric studies on the role of calcium in substrate binding to 3-ketovalidoxylamine A C-N lyase.
    Takeuchi M; Asano N; Kameda Y; Matsui K
    Chem Pharm Bull (Tokyo); 1988 Sep; 36(9):3540-5. PubMed ID: 3240546
    [No Abstract]   [Full Text] [Related]  

  • 27. Role of lysine, tryptophan and calcium in the beta-elimination activity of a low-molecular-mass pectate lyase from Fusarium moniliformae.
    Rao MN; Kembhavi AA; Pant A
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):159-64. PubMed ID: 8870663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformation and polarity of the active site of xylanase I from Thermomonospora sp. as deduced by fluorescent chemoaffinity labeling. Site and significance of a histidine residue.
    George SP; Rao MB
    Eur J Biochem; 2001 May; 268(10):2881-8. PubMed ID: 11358504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2,4,6-Trinitrobenzenesulfonate labels an essential amino group near the bound phosphate at the catalytic site of mitochondrial F1-ATPase.
    Ting LP; Wang JH
    Biochem Biophys Res Commun; 1981 Aug; 101(3):934-8. PubMed ID: 6458293
    [No Abstract]   [Full Text] [Related]  

  • 30. Enhancement of 14S and 30S dynein adenosine triphosphatase activities by modification of amino groups with trinitrobenzenesulfonate. A comparison with modification of SH groups.
    Shimizu T
    J Biochem; 1979 Jun; 85(6):1421-6. PubMed ID: 156723
    [No Abstract]   [Full Text] [Related]  

  • 31. Use of trinitrobenzenesulfonic acid in the determination of protein amino groups on the external surface of rat erythrocyte membranes.
    Fomenko BS; Dovgii IE; Akoev IG
    Biol Bull Acad Sci USSR; 1980; 7(2):90-4. PubMed ID: 7225469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid residues essential for catalysis by peptidyl dipeptidase-4 from Pseudomonas maltophilia.
    Lanzillo JJ; Dasarathy Y; Fanburg BL
    Biochem Biophys Res Commun; 1989 Jan; 158(1):45-51. PubMed ID: 2563225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical modification of lysyl residues of Rhodotorula gracilis D-amino acid oxidase.
    Gadda G; Beretta GL; Pilone MS
    Biochem Mol Biol Int; 1994 Aug; 33(5):947-55. PubMed ID: 7987263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The presence of essential histidine residues in manganese(III)-containing acid phosphatase from sweet potato.
    Fujimoto S; Murakami K; Ohara A
    J Biochem; 1985 Jun; 97(6):1777-84. PubMed ID: 3928618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passive cation movements in the Ehrlich ascites tumor cell: the effects of 2,4,6-trinitrobenzene sulfonic acid.
    Smith TC; Adams R
    J Cell Physiol; 1976 Jan; 87(1):53-62. PubMed ID: 1245558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic alterations of the divalent cation-dependent ATPase activities of human erythrocyte membranes induced by blocking the membrane amino groups.
    Scutari G; Ballestrin G; Branca D; Boninsegna A
    Boll Soc Ital Biol Sper; 1983 Oct; 59(10):1391-7. PubMed ID: 6140929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction and analytical applications of liquid membrane electrode for trinitrobenzenesulfonic acid (TNBS).
    Sarantonis EG; Karayannis MI
    Anal Biochem; 1983 Apr; 130(1):177-84. PubMed ID: 6869798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The determination of protease activity in tissue homogenates and extracts with trinitrobenzenesulphonic acid (author's transl)].
    Valet G
    Z Klin Chem Klin Biochem; 1971 Nov; 9(6):491-3. PubMed ID: 5173528
    [No Abstract]   [Full Text] [Related]  

  • 39. Chemical modification of wheat β-amylase by trinitrobenzenesulfonic acid, methoxypolyethylene glycol, and glutaraldehyde to improve its thermal stability and activity.
    Daba T; Kojima K; Inouye K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):420-6. PubMed ID: 24315646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical modification of essential histidine residues in aspartase with diethylpyrocarbonate.
    Ida N; Tokushige M
    J Biochem; 1984 Nov; 96(5):1315-21. PubMed ID: 6396297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.