These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23940072)

  • 1. Waste not, want not: mild and selective catalytic oxidation of uronic acids.
    van der Klis F; Frissen AE; van Haveren J; van Es DS
    ChemSusChem; 2013 Sep; 6(9):1640-5. PubMed ID: 23940072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable green catalysis by supported metal nanoparticles.
    Fukuoka A; Dhepe PL
    Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.
    Guo Z; Liu B; Zhang Q; Deng W; Wang Y; Yang Y
    Chem Soc Rev; 2014 May; 43(10):3480-524. PubMed ID: 24553414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benign catalysis with iron: unique selectivity in catalytic isomerization reactions of olefins.
    Jennerjahn R; Jackstell R; Piras I; Franke R; Jiao H; Bauer M; Beller M
    ChemSusChem; 2012 Apr; 5(4):734-9. PubMed ID: 22411860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-free heterogeneous catalysis for sustainable chemistry.
    Su DS; Zhang J; Frank B; Thomas A; Wang X; Paraknowitsch J; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):169-80. PubMed ID: 20127789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of uronic oxidase activity in ripening peaches.
    Cantu D; Greve LC; Lurie S; Labavitch JM
    Phytochemistry; 2006 Jan; 67(1):13-8. PubMed ID: 16309720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-gold nanohybrids for selective catalytic oxidation of alcohols.
    Kumar R; Gravel E; Hagège A; Li H; Jawale DV; Verma D; Namboothiri IN; Doris E
    Nanoscale; 2013 Jul; 5(14):6491-7. PubMed ID: 23752779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of Rh/Ce(0.5)Zr(0.5)O(2) reduced under mild conditions as an initiator of n-butane oxidative reforming at ambient temperature.
    Nagaoka K; Sato K; Fukuda S; Nishiguchi H; Takita Y
    ChemSusChem; 2009; 2(11):1032-5. PubMed ID: 19856379
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of halide and acid additives on the direct synthesis of hydrogen peroxide using supported gold-palladium catalysts.
    Ntainjua N E; Piccinini M; Pritchard JC; Edwards JK; Carley AF; Moulijn JA; Hutchings GJ
    ChemSusChem; 2009; 2(6):575-80. PubMed ID: 19350609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.
    Li X; Ko J; Zhang Y
    ChemSusChem; 2018 Feb; 11(3):612-618. PubMed ID: 29243400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfluoro-tagged gold nanoparticles immobilized on fluorous silica gel: a reusable catalyst for the benign oxidation and oxidative esterification of alcohols.
    Bernini R; Cacchi S; Fabrizi G; Niembro S; Prastaro A; Shafir A; Vallribera A
    ChemSusChem; 2009; 2(11):1036-40. PubMed ID: 19844935
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification and Characterization of Citrus Peel Uronic Acid Oxidase.
    Wei Y; Tan YL; Ang EL; Zhao H
    Chembiochem; 2020 Mar; 21(6):797-800. PubMed ID: 31587437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general and environmentally benign catalytic reduction of nitriles to primary amines.
    Enthaler S; Addis D; Junge K; Erre G; Beller M
    Chemistry; 2008; 14(31):9491-4. PubMed ID: 18816551
    [No Abstract]   [Full Text] [Related]  

  • 14. Potential of gold nanoparticles for oxidation in fine chemical synthesis.
    Mallat T; Baiker A
    Annu Rev Chem Biomol Eng; 2012; 3():11-28. PubMed ID: 22691089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uronic acids in oligosaccharide and glycoconjugate synthesis.
    Codée JD; Christina AE; Walvoort MT; Overkleeft HS; van der Marel GA
    Top Curr Chem; 2011; 301():253-89. PubMed ID: 21222193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainability in catalytic oxidation: an alternative approach or a structural evolution?
    Cavani F; Teles JH
    ChemSusChem; 2009; 2(6):508-34. PubMed ID: 19536755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocatalysis and prospects of green chemistry.
    Kalidindi SB; Jagirdar BR
    ChemSusChem; 2012 Jan; 5(1):65-75. PubMed ID: 22190344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General methods for the synthesis of glycopyranosyluronic acid azides.
    Ying L; Gervay-Hague J
    Carbohydr Res; 2003 Apr; 338(9):835-41. PubMed ID: 12681907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct oxidation of sugar nucleotides to the corresponding uronic acids: TEMPO and platinum-based procedures.
    Rejzek M; Mukhopadhyay B; Wenzel CQ; Lam JS; Field RA
    Carbohydr Res; 2007 Feb; 342(3-4):460-6. PubMed ID: 17087923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot selective conversion of hemicellulose (xylan) to xylitol under mild conditions.
    Yi G; Zhang Y
    ChemSusChem; 2012 Aug; 5(8):1383-7. PubMed ID: 22764105
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.