BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23940260)

  • 1. Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles.
    Lopez MN; Wilding TJ; Huettner JE
    J Gen Physiol; 2013 Sep; 142(3):225-39. PubMed ID: 23940260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid modulation and polyamine block of GluK2 kainate receptors analyzed by scanning mutagenesis.
    Wilding TJ; Chen K; Huettner JE
    J Gen Physiol; 2010 Sep; 136(3):339-52. PubMed ID: 20805577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid substitutions in the pore helix of GluR6 control inhibition by membrane fatty acids.
    Wilding TJ; Fulling E; Zhou Y; Huettner JE
    J Gen Physiol; 2008 Jul; 132(1):85-99. PubMed ID: 18562501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium opens GluK2 kainate receptors with cysteine substitutions at the M3 helix bundle crossing.
    Wilding TJ; Huettner JE
    J Gen Physiol; 2019 Apr; 151(4):435-451. PubMed ID: 30498132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Q/R site editing controls kainate receptor inhibition by membrane fatty acids.
    Wilding TJ; Zhou Y; Huettner JE
    J Neurosci; 2005 Oct; 25(41):9470-8. PubMed ID: 16221857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites.
    Li YJ; Duan GF; Sun JH; Wu D; Ye C; Zang YY; Chen GQ; Shi YY; Wang J; Zhang W; Shi YS
    J Biol Chem; 2019 Nov; 294(47):17889-17902. PubMed ID: 31628192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial symmetry in a chimeric glutamate receptor pore.
    Wilding TJ; Lopez MN; Huettner JE
    Nat Commun; 2014; 5():3349. PubMed ID: 24561802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of critical functional determinants of kainate receptor modulation by auxiliary protein Neto2.
    Griffith TN; Swanson GT
    J Physiol; 2015 Nov; 593(22):4815-33. PubMed ID: 26282342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and intracellular distribution of kainate receptors is determined by RNA editing and subunit composition.
    Ball SM; Atlason PT; Shittu-Balogun OO; Molnár E
    J Neurochem; 2010 Sep; 114(6):1805-18. PubMed ID: 20626562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid substitutions in the pore of rat glutamate receptors at sites influencing block by polyamines.
    Panchenko VA; Glasser CR; Partin KM; Mayer ML
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):337-57. PubMed ID: 10523404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain organization and function in GluK2 subtype kainate receptors.
    Das U; Kumar J; Mayer ML; Plested AJ
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8463-8. PubMed ID: 20404149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Channel-opening kinetic mechanism for human wild-type GluK2 and the M867I mutant kainate receptor.
    Han Y; Wang C; Park JS; Niu L
    Biochemistry; 2010 Nov; 49(43):9207-16. PubMed ID: 20863077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors.
    Swanson GT; Feldmeyer D; Kaneda M; Cull-Candy SG
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):129-42. PubMed ID: 8730589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis.
    Panchenko VA; Glasser CR; Mayer ML
    J Gen Physiol; 2001 Apr; 117(4):345-60. PubMed ID: 11279254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse.
    Seeburg PH; Single F; Kuner T; Higuchi M; Sprengel R
    Brain Res; 2001 Jul; 907(1-2):233-43. PubMed ID: 11430906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors.
    Fisher JL; Housley PR
    Cell Mol Neurobiol; 2013 Nov; 33(8):1099-108. PubMed ID: 23975096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kainate receptor channel opening and gating mechanism.
    Gangwar SP; Yelshanskaya MV; Nadezhdin KD; Yen LY; Newton TP; Aktolun M; Kurnikova MG; Sobolevsky AI
    Nature; 2024 Jun; 630(8017):762-768. PubMed ID: 38778115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channel-opening kinetic mechanism of wild-type GluK1 kainate receptors and a C-terminal mutant.
    Han Y; Wang C; Park JS; Niu L
    Biochemistry; 2012 Jan; 51(3):761-8. PubMed ID: 22191429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino-acid residues involved in glutamate receptor 6 kainate receptor gating and desensitization.
    Fleck MW; Cornell E; Mah SJ
    J Neurosci; 2003 Feb; 23(4):1219-27. PubMed ID: 12598610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels.
    Schwarz MK; Pawlak V; Osten P; Mack V; Seeburg PH; Köhr G
    Eur J Neurosci; 2001 Sep; 14(5):861-8. PubMed ID: 11576190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.