These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 23940366)
21. Elevation of growth hormone-releasing hormone receptor messenger ribonucleic acid expression in growth hormone-secreting pituitary adenoma with Gsalpha protein mutation. Sakai N; Kim K; Sanno N; Yoshida D; Teramoto A; Shibasaki T Neurol Med Chir (Tokyo); 2008; 48(11):481-7; discussion 487-8. PubMed ID: 19029774 [TBL] [Abstract][Full Text] [Related]
22. Pit-1 gene expression in human pituitary adenomas using the reverse transcription polymerase chain reaction method. Yamada S; Takahashi M; Hara M; Hattori A; Sano T; Ozawa Y; Shishiba Y; Hirata K; Usui M Clin Endocrinol (Oxf); 1996 Sep; 45(3):263-72. PubMed ID: 8949563 [TBL] [Abstract][Full Text] [Related]
23. Melanin-concentrating hormone stimulates human growth hormone secretion: a novel effect of MCH on the hypothalamic-pituitary axis. Segal-Lieberman G; Rubinfeld H; Glick M; Kronfeld-Schor N; Shimon I Am J Physiol Endocrinol Metab; 2006 May; 290(5):E982-8. PubMed ID: 16603725 [TBL] [Abstract][Full Text] [Related]
24. Somatomammotrophic cells in GH-secreting and PRL-secreting human pituitary adenomas. Bassetti M; Brina M; Spada A; Giannattasio G J Endocrinol Invest; 1989 Nov; 12(10):705-12. PubMed ID: 2614009 [TBL] [Abstract][Full Text] [Related]
25. Calcitonin gene-related peptide as a GH secretagogue in human and rat pituitary somatotrophs. Nakamura Y; Shimatsu A; Murabe H; Mizuta H; Ihara C; Nakao K Brain Res; 1998 Oct; 807(1-2):203-7. PubMed ID: 9757038 [TBL] [Abstract][Full Text] [Related]
26. The CXCR4 antagonist AMD3100 suppresses hypoxia-mediated growth hormone production in GH3 rat pituitary adenoma cells. Yoshida D; Koketshu K; Nomura R; Teramoto A J Neurooncol; 2010 Oct; 100(1):51-64. PubMed ID: 20309720 [TBL] [Abstract][Full Text] [Related]
27. In vitro impact of pegvisomant on growth hormone-secreting pituitary adenoma cells. Cuny T; Zeiller C; Bidlingmaier M; Défilles C; Roche C; Blanchard MP; Theodoropoulou M; Graillon T; Pertuit M; Figarella-Branger D; Enjalbert A; Brue T; Barlier A Endocr Relat Cancer; 2016 Jul; 23(7):509-19. PubMed ID: 27267119 [TBL] [Abstract][Full Text] [Related]
28. Internalization of the radioiodinated somatostatin analog [125I-Tyr3]octreotide by mouse and human pituitary tumor cells: increase by unlabeled octreotide. Hofland LJ; van Koetsveld PM; Waaijers M; Zuyderwijk J; Breeman WA; Lamberts SW Endocrinology; 1995 Sep; 136(9):3698-706. PubMed ID: 7649075 [TBL] [Abstract][Full Text] [Related]
29. GH and Senescence: A New Understanding of Adult GH Action. Chesnokova V; Melmed S J Endocr Soc; 2022 Jan; 6(1):bvab177. PubMed ID: 34909519 [TBL] [Abstract][Full Text] [Related]
30. Novel ghrelin analogs with improved affinity for the GH secretagogue receptor stimulate GH and prolactin release from human pituitary cells. Rubinfeld H; Hadani M; Taylor JE; Dong JZ; Comstock J; Shen Y; DeOliveira D; Datta R; Culler MD; Shimon I Eur J Endocrinol; 2004 Dec; 151(6):787-95. PubMed ID: 15588247 [TBL] [Abstract][Full Text] [Related]
31. Molecular mechanisms of pituitary adenoma senescence. Chesnokova V; Zonis S; Ben-Shlomo A; Wawrowsky K; Melmed S Front Horm Res; 2010; 38():7-14. PubMed ID: 20616490 [TBL] [Abstract][Full Text] [Related]
32. Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells. Hasegawa H; Yamada Y; Iha H; Tsukasaki K; Nagai K; Atogami S; Sugahara K; Tsuruda K; Ishizaki A; Kamihira S Leukemia; 2009 Nov; 23(11):2090-101. PubMed ID: 19710698 [TBL] [Abstract][Full Text] [Related]
33. Pharmacological inhibition of Mdm2 triggers growth arrest and promotes DNA breakage in mouse colon tumors and human colon cancer cells. Rigatti MJ; Verma R; Belinsky GS; Rosenberg DW; Giardina C Mol Carcinog; 2012 May; 51(5):363-78. PubMed ID: 21557332 [TBL] [Abstract][Full Text] [Related]
34. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence. Leontieva OV; Blagosklonny MV Aging (Albany NY); 2010 Dec; 2(12):924-35. PubMed ID: 21212465 [TBL] [Abstract][Full Text] [Related]
35. The aging suppressor klotho: a potential regulator of growth hormone secretion. Shahmoon S; Rubinfeld H; Wolf I; Cohen ZR; Hadani M; Shimon I; Rubinek T Am J Physiol Endocrinol Metab; 2014 Aug; 307(3):E326-34. PubMed ID: 24939736 [TBL] [Abstract][Full Text] [Related]
36. The effect of GHRH on somatotrope hyperplasia and tumor formation in the presence and absence of GH signaling. Kineman RD; Teixeira LT; Amargo GV; Coschigano KT; Kopchick JJ; Frohman LA Endocrinology; 2001 Sep; 142(9):3764-73. PubMed ID: 11517152 [TBL] [Abstract][Full Text] [Related]
37. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Korotchkina LG; Leontieva OV; Bukreeva EI; Demidenko ZN; Gudkov AV; Blagosklonny MV Aging (Albany NY); 2010 Jun; 2(6):344-52. PubMed ID: 20606252 [TBL] [Abstract][Full Text] [Related]
38. Induction of GH, PRL, and TSH beta mRNA by transfection of Pit-1 in a human pituitary adenoma-derived cell line. Miyai S; Yoshimura S; Iwasaki Y; Takekoshi S; Lloyd RV; Osamura RY Cell Tissue Res; 2005 Nov; 322(2):269-77. PubMed ID: 16133148 [TBL] [Abstract][Full Text] [Related]
40. Mechanisms for luteinizing hormone induction of growth hormone gene transcription in fish model: crosstalk of the cAMP/PKA pathway with MAPK-and PI3K-dependent cascades. Sun C; He M; Ko WK; Wong AO Mol Cell Endocrinol; 2014 Feb; 382(2):835-50. PubMed ID: 24161589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]