BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23940745)

  • 1. Trade-offs between predation risk and growth benefits in the copepod Eurytemora affinis with contrasting pigmentation.
    Gorokhova E; Lehtiniemi M; Motwani NH
    PLoS One; 2013; 8(8):e71385. PubMed ID: 23940745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes.
    Souissi A; Hwang JS; Souissi S
    Sci Rep; 2021 Oct; 11(1):20139. PubMed ID: 34635769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and morphological heterogeneity among populations of Eurytemora affinis (Crustacea: Copepoda: Temoridae) in European waters.
    Sukhikh N; Souissi A; Souissi S; Winkler G; Castric V; Holl AC; Alekseev V
    C R Biol; 2016; 339(5-6):197-206. PubMed ID: 27156447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation.
    Hansson LA
    Proc Biol Sci; 2000 Nov; 267(1459):2327-31. PubMed ID: 11413651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea.
    Baek SY; Jang KH; Choi EH; Ryu SH; Kim SK; Lee JH; Lim YJ; Lee J; Jun J; Kwak M; Lee YS; Hwang JS; Venmathi Maran BA; Chang CY; Kim IH; Hwang UW
    PLoS One; 2016; 11(7):e0157307. PubMed ID: 27383475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.
    Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E
    PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity.
    Kadiene EU; Bialais C; Ouddane B; Hwang JS; Souissi S
    Ecotoxicology; 2017 Nov; 26(9):1227-1239. PubMed ID: 28990129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of the copepod Eurytemora affinis upon exposure to endocrine disruptor pesticides: Focus on reproduction and development.
    Legrand E; Forget-Leray J; Duflot A; Olivier S; Thomé JP; Danger JM; Boulangé-Lecomte C
    Aquat Toxicol; 2016 Jul; 176():64-75. PubMed ID: 27111276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Costs and compensation in zooplankton pigmentation under countervailing threats of ultraviolet radiation and predation.
    Bashevkin SM; Christy JH; Morgan SG
    Oecologia; 2020 May; 193(1):111-123. PubMed ID: 32314044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotype-by-environment interaction for salinity tolerance in the freshwater-invading copepod Eurytemora affinis.
    Lee CE; Petersen CH
    Physiol Biochem Zool; 2002; 75(4):335-44. PubMed ID: 12324889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-Seq-based transcriptome profiling and expression of 16 cytochrome P450 genes in the benzo[α]pyrene-exposed estuarine copepod Eurytemora affinis.
    Lee BY; Lee MC; Jeong CB; Kim HJ; Hagiwara A; Souissi S; Han J; Lee JS
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Dec; 28():142-150. PubMed ID: 30196245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-Feulgen cytophotometric determination of genome size for the freshwater-invading copepod Eurytemora affinis.
    Rasch EM; Lee CE; Wyngaard GA
    Genome; 2004 Jun; 47(3):559-64. PubMed ID: 15190373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predation risk alters life history strategies in an oceanic copepod.
    Kvile KØ; Altin D; Thommesen L; Titelman J
    Ecology; 2021 Jan; 102(1):e03214. PubMed ID: 33001438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic stimulation by light in a pigmented freshwater invertebrate.
    Byron ER
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1765-7. PubMed ID: 16592993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of bioluminescence in marine planktonic copepods.
    Takenaka Y; Yamaguchi A; Tsuruoka N; Torimura M; Gojobori T; Shigeri Y
    Mol Biol Evol; 2012 Jun; 29(6):1669-81. PubMed ID: 22319154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and elimination, and effect of estrogen-like contaminants in estuarine copepods: an experimental study.
    Cailleaud K; Budzinski H; Lardy S; Augagneur S; Barka S; Souissi S; Forget-Leray J
    Environ Sci Pollut Res Int; 2011 Feb; 18(2):226-36. PubMed ID: 20607617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predator species related adaptive changes in larval growth and digestive physiology.
    Jiang B; Johansson F; Stoks R; Mauersberger R; Mikolajewski DJ
    J Insect Physiol; 2019 Apr; 114():23-29. PubMed ID: 30716335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury-methylating bacteria are associated with copepods: A proof-of-principle survey in the Baltic Sea.
    Gorokhova E; Soerensen AL; Motwani NH
    PLoS One; 2020; 15(3):e0230310. PubMed ID: 32176728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet.
    Gorokhova E; El-Shehawy R
    Front Physiol; 2021; 12():805646. PubMed ID: 35058807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Copepods Can Eat Toxins Without Getting Sick: Gut Bacteria Help Zooplankton to Feed in Cyanobacteria Blooms.
    Gorokhova E; El-Shehawy R; Lehtiniemi M; Garbaras A
    Front Microbiol; 2020; 11():589816. PubMed ID: 33510717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.