These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23941367)

  • 1. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density.
    Zhang S; Chung TS
    Environ Sci Technol; 2013 Sep; 47(17):10085-92. PubMed ID: 23941367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.
    Kim YC; Kim Y; Oh D; Lee KH
    Environ Sci Technol; 2013 Mar; 47(6):2966-73. PubMed ID: 23398240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.
    Han G; Wang P; Chung TS
    Environ Sci Technol; 2013 Jul; 47(14):8070-7. PubMed ID: 23772898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation.
    Chen SC; Amy GL; Chung TS
    Water Res; 2016 Jan; 88():144-155. PubMed ID: 26492341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.
    Li X; Cai T; Chung TS
    Environ Sci Technol; 2014 Aug; 48(16):9898-907. PubMed ID: 25019605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates.
    Zhong P; Fu X; Chung TS; Weber M; Maletzko C
    Environ Sci Technol; 2013 Jul; 47(13):7430-6. PubMed ID: 23731192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.
    Sun SP; Chung TS
    Environ Sci Technol; 2013 Nov; 47(22):13167-74. PubMed ID: 24117418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures.
    Straub AP; Osuji CO; Cath TY; Elimelech M
    Environ Sci Technol; 2015 Oct; 49(20):12551-9. PubMed ID: 26393282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.
    Li X; Cai T; Chen C; Chung TS
    Water Res; 2016 Feb; 89():50-8. PubMed ID: 26630043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.
    Yip NY; Elimelech M
    Environ Sci Technol; 2013; 47(21):12607-16. PubMed ID: 24099133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adverse impact of feed channel spacers on the performance of pressure retarded osmosis.
    Kim YC; Elimelech M
    Environ Sci Technol; 2012 Apr; 46(8):4673-81. PubMed ID: 22420537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.
    Straub AP; Lin S; Elimelech M
    Environ Sci Technol; 2014 Oct; 48(20):12435-44. PubMed ID: 25222561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production.
    Sukitpaneenit P; Chung TS
    Environ Sci Technol; 2012 Jul; 46(13):7358-65. PubMed ID: 22663085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of water and salt fluxes through reverse osmosis membranes.
    Zhou W; Song L
    Environ Sci Technol; 2005 May; 39(9):3382-7. PubMed ID: 15926593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure retarded osmosis for energy production: membrane materials and operating conditions.
    Kim H; Choi JS; Lee S
    Water Sci Technol; 2012; 65(10):1789-94. PubMed ID: 22546793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions.
    Kim S
    Bioresour Technol; 2014 Aug; 165():88-95. PubMed ID: 24746768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon.
    Lay WC; Chong TH; Tang CY; Fane AG; Zhang J; Liu Y
    Water Sci Technol; 2010; 61(4):927-36. PubMed ID: 20182071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.