These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23941534)

  • 41. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electronic properties of hydrogen-bonded complexes of benzene(HCN)(1-4): comparison with benzene(H2O)(1-4).
    Mateus MP; Galamba N; Cabral BJ
    J Phys Chem A; 2011 Nov; 115(46):13714-23. PubMed ID: 21978376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stable tetrabenzo-Chichibabin's hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms.
    Zeng Z; Sung YM; Bao N; Tan D; Lee R; Zafra JL; Lee BS; Ishida M; Ding J; López Navarrete JT; Li Y; Zeng W; Kim D; Huang KW; Webster RD; Casado J; Wu J
    J Am Chem Soc; 2012 Sep; 134(35):14513-25. PubMed ID: 22889277
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonvalence Correlation-Bound Anion States of Polycyclic Aromatic Hydrocarbons.
    Voora VK; Jordan KD
    J Phys Chem Lett; 2015 Oct; 6(20):3994-7. PubMed ID: 26722767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting the Open-Shell Character of Polycyclic Hydrocarbons in Terms of Clar Sextets.
    Trinquier G; Malrieu JP
    J Phys Chem A; 2018 Feb; 122(4):1088-1103. PubMed ID: 29271647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Edge versus interior in the chemical bonding and magnetism of zigzag edged triangular graphene molecules.
    Philpott MR; Vukovic S; Kawazoe Y; Lester WA
    J Chem Phys; 2010 Jul; 133(4):044708. PubMed ID: 20687677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stacking of polycyclic aromatic hydrocarbons as prototype for graphene multilayers, studied using density functional theory augmented with a dispersion term.
    Feng C; Lin CS; Fan W; Zhang RQ; Van Hove MA
    J Chem Phys; 2009 Nov; 131(19):194702. PubMed ID: 19929066
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A First Principles Development of a General Anisotropic Potential for Polycyclic Aromatic Hydrocarbons.
    Totton TS; Misquitta AJ; Kraft M
    J Chem Theory Comput; 2010 Mar; 6(3):683-95. PubMed ID: 26613299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocatalytic oxidation of polycyclic aromatic hydrocarbons: intermediates identification and toxicity testing.
    Woo OT; Chung WK; Wong KH; Chow AT; Wong PK
    J Hazard Mater; 2009 Sep; 168(2-3):1192-9. PubMed ID: 19361920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions.
    Fortenberry RC; Moore MM; Lee TJ
    J Phys Chem A; 2016 Sep; 120(37):7327-34. PubMed ID: 27585793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theoretical study on oligoacenes and polycyclic aromatic hydrocarbons using the restricted active space self-consistent field method.
    Aiga F
    J Phys Chem A; 2012 Jan; 116(1):663-9. PubMed ID: 22201478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical design of high-spin polycyclic hydrocarbons.
    Trinquier G; Suaud N; Malrieu JP
    Chemistry; 2010 Aug; 16(29):8762-72. PubMed ID: 20572170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlated Electronic States of a Few Polycyclic Aromatic Hydrocarbons: A Computational Study.
    Giri G; Pati YA; Ramasesha S
    J Phys Chem A; 2019 Jun; 123(25):5257-5265. PubMed ID: 31058503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2011 Jun; 115(22):5547-59. PubMed ID: 21557589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupling Constants, High Spin, and Broken Symmetry States of Organic Radicals: an Assessment of the Molecules-in-Molecules Fragmentation-Based Method.
    Sadhukhan T; Beckett D; Thapa B; Raghavachari K
    J Chem Theory Comput; 2019 Nov; 15(11):5998-6009. PubMed ID: 31625737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanographene and graphene edges: electronic structure and nanofabrication.
    Fujii S; Enoki T
    Acc Chem Res; 2013 Oct; 46(10):2202-10. PubMed ID: 24383129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces.
    Ding ZB; Tommasini M; Maestri M
    React Chem Eng; 2019 Feb; 4(2):410-417. PubMed ID: 30931152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bromination Reactivity of Oxygen-Terminated Edges of Graphene.
    Kim J; Yamada Y; Sato S
    J Nanosci Nanotechnol; 2021 May; 21(5):3004-3009. PubMed ID: 33653472
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Helical Folding-Induced Stabilization of Ferromagnetic Polyradicals Based on Triarylmethyl Radical Derivatives.
    Reta Mañeru D; Moreira Ide P; Illas F
    J Am Chem Soc; 2016 Apr; 138(16):5271-5. PubMed ID: 27046281
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tailoring Bond Topologies in Open-Shell Graphene Nanostructures.
    Mishra S; Lohr TG; Pignedoli CA; Liu J; Berger R; Urgel JI; Müllen K; Feng X; Ruffieux P; Fasel R
    ACS Nano; 2018 Dec; 12(12):11917-11927. PubMed ID: 30395436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.