These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 23941581)
1. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility. Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581 [TBL] [Abstract][Full Text] [Related]
2. Influence of soil geochemical and physical properties on the sorption and bioaccessibility of chromium(III). Stewart MA; Jardine PM; Barnett MO; Mehlhorn TL; Hyder LK; McKay LD J Environ Qual; 2003; 32(1):129-37. PubMed ID: 12549551 [TBL] [Abstract][Full Text] [Related]
3. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835 [TBL] [Abstract][Full Text] [Related]
4. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
5. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system. Kantar C; Demiray H; Dogan NM Chemosphere; 2011 Mar; 82(10):1496-505. PubMed ID: 21094978 [TBL] [Abstract][Full Text] [Related]
6. Effects of soil pH and organic carbon content on in vitro Cr bioaccessibility in Ultisol, Alfisol, and Inceptisol. Shi YX; Cui JQ; Zhang F; Li KW; Jiang J; Xu RK Chemosphere; 2023 Sep; 336():139274. PubMed ID: 37343637 [TBL] [Abstract][Full Text] [Related]
7. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the human health risks posed by exposure to chromium-contaminated soils. Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927 [TBL] [Abstract][Full Text] [Related]
9. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
10. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution. Kantar C; Demiray H; Dogan NM; Dodge CJ Chemosphere; 2011 Mar; 82(10):1489-95. PubMed ID: 21272912 [TBL] [Abstract][Full Text] [Related]
11. XANES study of Cr sorbed by a kitchen waste compost from water. Wei YL; Lee YC; Hsieh HF Chemosphere; 2005 Nov; 61(7):1051-60. PubMed ID: 15893802 [TBL] [Abstract][Full Text] [Related]
12. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides. Whitaker AH; Peña J; Amor M; Duckworth OW Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797 [TBL] [Abstract][Full Text] [Related]
13. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. Kantar C; Cetin Z; Demiray H J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738 [TBL] [Abstract][Full Text] [Related]
14. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils. Chiu CC; Cheng CJ; Lin TH; Juang KW; Lee DY J Hazard Mater; 2009 Jan; 161(2-3):1239-44. PubMed ID: 18524481 [TBL] [Abstract][Full Text] [Related]
15. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties. Xiao W; Zhang Y; Li T; Chen B; Wang H; He Z; Yang X J Environ Qual; 2012; 41(5):1452-8. PubMed ID: 23099936 [TBL] [Abstract][Full Text] [Related]
16. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Burton ED; Choppala G; Karimian N; Johnston SG Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817 [TBL] [Abstract][Full Text] [Related]
17. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment. Hellerich LA; Nikolaidis NP Water Res; 2005 Aug; 39(13):2851-68. PubMed ID: 15993460 [TBL] [Abstract][Full Text] [Related]
18. The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(VI): Conjunction of the modeling approach with spectroscopic and isotopic investigations. Veselská V; Šillerová H; Göttlicher J; Michálková Z; Siddique JA; Číhalová S; Chrastný V; Steininger R; Mangold S; Komárek M Environ Int; 2019 Jun; 127():848-857. PubMed ID: 31075676 [TBL] [Abstract][Full Text] [Related]
19. Influence of soil properties on the bioaccessibility of Cr and Ni in geologic serpentine and anthropogenically contaminated non-serpentine soils in Taiwan. Wang YL; Tsou MC; Liao HT; Hseu ZY; Dang W; Hsi HC; Chien LC Sci Total Environ; 2020 Apr; 714():136761. PubMed ID: 31982757 [TBL] [Abstract][Full Text] [Related]
20. Influence of elevated temperature on the species and mobility of chromium in ferrous sulfate-amended contaminated soil. Zhao R; Zhang X; Zhou Y; Li J; Guo B; Oyama K; Tokoro C J Environ Manage; 2024 Apr; 356():120457. PubMed ID: 38503231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]