These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23941708)

  • 1. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass.
    Jiang L; Hu S; Sun LS; Su S; Xu K; He LM; Xiang J
    Bioresour Technol; 2013 Oct; 146():254-260. PubMed ID: 23941708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.
    Hu S; Jiang L; Wang Y; Su S; Sun L; Xu B; He L; Xiang J
    Bioresour Technol; 2015 Sep; 192():23-30. PubMed ID: 26005925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus.
    Ge J; Wu Y; Han Y; Qin C; Nie S; Liu S; Wang S; Yao S
    Bioresour Technol; 2020 Jul; 307():123246. PubMed ID: 32234588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw.
    Imman S; Arnthong J; Burapatana V; Champreda V; Laosiripojana N
    Bioresour Technol; 2014 Nov; 171():29-36. PubMed ID: 25181697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts.
    Larabi C; al Maksoud W; Szeto KC; Roubaud A; Castelli P; Santini CC; Walter JJ
    Bioresour Technol; 2013 Nov; 148():255-60. PubMed ID: 24055967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.
    Long J; Song H; Jun X; Sheng S; Lun-Shi S; Kai X; Yao Y
    Bioresour Technol; 2012 Jul; 116():278-84. PubMed ID: 22525260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents.
    Eom IY; Kim KH; Kim JY; Lee SM; Yeo HM; Choi IG; Choi JW
    Bioresour Technol; 2011 Feb; 102(3):3437-44. PubMed ID: 21074420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4.
    Kumagai S; Matsuno R; Grause G; Kameda T; Yoshioka T
    Bioresour Technol; 2015 Feb; 178():76-82. PubMed ID: 25451777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching of heavy metals from chromated copper arsenate (CCA) treated wood after disposal.
    Moghaddam AH; Mulligan CN
    Waste Manag; 2008; 28(3):628-37. PubMed ID: 17499985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the relevance between biomass pyrolysis polygeneration and washing pretreatment under different severities: Water, dilute acid solution and aqueous phase bio-oil.
    Cen K; Zhang J; Ma Z; Chen D; Zhou J; Ma H
    Bioresour Technol; 2019 Apr; 278():26-33. PubMed ID: 30669028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the morphology and reactivity of chars from Triplochiton scleroxylon pyrolysed under varied conditions.
    Oluoti K; Pettersson A; Richards T
    Bioresour Technol; 2016 May; 208():94-99. PubMed ID: 26926201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments.
    Balagurumurthy B; Srivastava V; Vinit ; Kumar J; Biswas B; Singh R; Gupta P; Kumar KL; Singh R; Bhaskar T
    Bioresour Technol; 2015; 188():273-9. PubMed ID: 25637279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.
    Xu C; Hu S; Xiang J; Zhang L; Sun L; Shuai C; Chen Q; He L; Edreis EM
    Bioresour Technol; 2014 Feb; 154():313-21. PubMed ID: 24412857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments.
    Thangalazhy-Gopakumar S; Adhikari S; Gupta RB; Tu M; Taylor S
    Bioresour Technol; 2011 Jun; 102(12):6742-9. PubMed ID: 21530240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.
    Keown DM; Favas G; Hayashi J; Li CZ
    Bioresour Technol; 2005 Sep; 96(14):1570-7. PubMed ID: 15978989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and pyrolysis characteristics of lignin derived from wood powder hydrolysis residues.
    Zhang B; Yin X; Wu C; Qiu Z; Wang C; Huang Y; Ma L; Wu S
    Appl Biochem Biotechnol; 2012 Sep; 168(1):37-46. PubMed ID: 21603951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process.
    Lai YC; Lee WJ; Huang KL; Wu CM
    J Hazard Mater; 2008 Jun; 154(1-3):588-94. PubMed ID: 18060691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.
    Tinwala F; Mohanty P; Parmar S; Patel A; Pant KK
    Bioresour Technol; 2015; 188():258-64. PubMed ID: 25770670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.