These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 23941870)

  • 1. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones.
    Assili M; Haddad S
    J Phys Condens Matter; 2013 Sep; 25(36):365503. PubMed ID: 23941870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the zero-mode landau level on interlayer magnetoresistance in multilayer massless Dirac fermion systems.
    Tajima N; Sugawara S; Kato R; Nishio Y; Kajita K
    Phys Rev Lett; 2009 May; 102(17):176403. PubMed ID: 19518803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the zero-gap organic conductor α-(BEDT-TTF)
    Kobayashi A; Katayama S; Suzumura Y
    Sci Technol Adv Mater; 2009 Apr; 10(2):024309. PubMed ID: 27877282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interlayer quantum transport in Dirac semimetal BaGa
    Xu S; Bao C; Guo PJ; Wang YY; Yu QH; Sun LL; Su Y; Liu K; Lu ZY; Zhou S; Xia TL
    Nat Commun; 2020 May; 11(1):2370. PubMed ID: 32398654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of organic zero-gap conductor α-(BEDT-TTF)
    Tajima N; Kajita K
    Sci Technol Adv Mater; 2009 Apr; 10(2):024308. PubMed ID: 27877281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous interlayer magnetoresistance in bilayer crystals.
    Smith MF
    J Phys Condens Matter; 2012 Mar; 24(11):115702. PubMed ID: 22353771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties.
    Zhang L; Lin BC; Wu YF; Wu HC; Huang TW; Chang CR; Ke X; Kurttepeli M; Tendeloo GV; Xu J; Yu D; Liao ZM
    ACS Nano; 2017 Jun; 11(6):6277-6285. PubMed ID: 28489949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure effects on Dirac fermions in α-(BEDT-TTF)₂I₃.
    Himura T; Morinari T; Tohyama T
    J Phys Condens Matter; 2011 Nov; 23(46):464202. PubMed ID: 22052807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.
    Islam SKF
    J Phys Condens Matter; 2018 Jul; 30(27):275301. PubMed ID: 29846181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Insulator-Semimetal Transitions in 3D Topological Insulator thin Films by Intersurface Hybridization and In-Plane Magnetic Fields.
    Xu Y; Jiang G; Miotkowski I; Biswas RR; Chen YP
    Phys Rev Lett; 2019 Nov; 123(20):207701. PubMed ID: 31809081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical magnetoplasmons in rhombohedral graphite with a three-dimensional Dirac cone structure.
    Ho CH; Chang CP; Lin MF
    J Phys Condens Matter; 2015 Apr; 27(12):125602. PubMed ID: 25739521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spawning rings of exceptional points out of Dirac cones.
    Zhen B; Hsu CW; Igarashi Y; Lu L; Kaminer I; Pick A; Chua SL; Joannopoulos JD; Soljačić M
    Nature; 2015 Sep; 525(7569):354-8. PubMed ID: 26352476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interacting chiral electrons at the 2D Dirac points: a review.
    Hirata M; Kobayashi A; Berthier C; Kanoda K
    Rep Prog Phys; 2021 Mar; 84(3):. PubMed ID: 33059346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and magnetic properties of honeycomb transition metal monolayers: first-principles insights.
    Li X; Dai Y; Ma Y; Huang B
    Phys Chem Chem Phys; 2014 Jul; 16(26):13383-9. PubMed ID: 24879520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Topological Bloch-State Defects and Their Merging Transition.
    Tarnowski M; Nuske M; Fläschner N; Rem B; Vogel D; Freystatzky L; Sengstock K; Mathey L; Weitenberg C
    Phys Rev Lett; 2017 Jun; 118(24):240403. PubMed ID: 28665652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions.
    Masuda H; Sakai H; Tokunaga M; Yamasaki Y; Miyake A; Shiogai J; Nakamura S; Awaji S; Tsukazaki A; Nakao H; Murakami Y; Arima TH; Tokura Y; Ishiwata S
    Sci Adv; 2016 Jan; 2(1):e1501117. PubMed ID: 27152326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.
    Yu H; Liu GB; Gong P; Xu X; Yao W
    Nat Commun; 2014 May; 5():3876. PubMed ID: 24821438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A topological Dirac insulator in a quantum spin Hall phase.
    Hsieh D; Qian D; Wray L; Xia Y; Hor YS; Cava RJ; Hasan MZ
    Nature; 2008 Apr; 452(7190):970-4. PubMed ID: 18432240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermi Velocity Reduction of Dirac Fermions around the Brillouin Zone Center in In
    Wang Z; Hao Z; Yu Y; Wang Y; Kumar S; Xie X; Tong M; Deng K; Hao YJ; Ma XM; Zhang K; Liu C; Ma M; Mei J; Wang G; Schwier EF; Shimada K; Xu F; Liu C; Huang W; Wang J; Jiang T; Chen C
    Adv Mater; 2021 Apr; 33(17):e2007503. PubMed ID: 33739570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.
    Weick G; Woollacott C; Barnes WL; Hess O; Mariani E
    Phys Rev Lett; 2013 Mar; 110(10):106801. PubMed ID: 23521276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.