These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 23942035)
21. Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu Jeong WL; Kim KP; Kim J; Park HK; Min JH; Lee JS; Mun SH; Kim ST; Jang JH; Jo W; Lee DS Adv Sci (Weinh); 2020 Nov; 7(21):1903085. PubMed ID: 33173721 [TBL] [Abstract][Full Text] [Related]
22. Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector. Khosroabadi S; Keshmiri SH Opt Express; 2014 May; 22 Suppl 3():A921-9. PubMed ID: 24922397 [TBL] [Abstract][Full Text] [Related]
23. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Chou SY; Ding W Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276 [TBL] [Abstract][Full Text] [Related]
24. Structural and electronic properties of CdTe Lingg M; Spescha A; Haass SG; Carron R; Buecheler S; Tiwari AN Sci Technol Adv Mater; 2018; 19(1):683-692. PubMed ID: 30294395 [TBL] [Abstract][Full Text] [Related]
25. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Ma J; Kuciauskas D; Albin D; Bhattacharya R; Reese M; Barnes T; Li JV; Gessert T; Wei SH Phys Rev Lett; 2013 Aug; 111(6):067402. PubMed ID: 23971610 [TBL] [Abstract][Full Text] [Related]
26. Grain-boundary-enhanced carrier collection in CdTe solar cells. Li C; Wu Y; Poplawsky J; Pennycook TJ; Paudel N; Yin W; Haigh SJ; Oxley MP; Lupini AR; Al-Jassim M; Pennycook SJ; Yan Y Phys Rev Lett; 2014 Apr; 112(15):156103. PubMed ID: 24785058 [TBL] [Abstract][Full Text] [Related]
27. [Study on back contact layer of CdTe solar cell by XPS]. Yang F; Zhong YQ; Zheng JG; Feng LH; Cai W; Cai YP; Zhang JQ; Li B; Lei Z; Li W; Wu LL Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):904-7. PubMed ID: 19626869 [TBL] [Abstract][Full Text] [Related]
28. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Potscavage WJ; Sharma A; Kippelen B Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653 [TBL] [Abstract][Full Text] [Related]
29. Numerical Investigation of Graphene as a Back Surface Field Layer on the Performance of Cadmium Telluride Solar Cell. Kc D; Shah DK; Akhtar MS; Park M; Kim CY; Yang OB; Pant B Molecules; 2021 May; 26(11):. PubMed ID: 34071651 [TBL] [Abstract][Full Text] [Related]
30. 8% Efficiency Cu Jo E; Gang MG; Shim H; Suryawanshi MP; Ghorpade UV; Kim JH ACS Appl Mater Interfaces; 2019 Jul; 11(26):23118-23124. PubMed ID: 31252467 [TBL] [Abstract][Full Text] [Related]
31. Understanding the Copassivation Effect of Cl and Se for CdTe Grain Boundaries. Shah A; Nicholson AP; Fiducia TAM; Abbas A; Pandey R; Liu J; Grovenor C; Walls JM; Sampath WS; Munshi AH ACS Appl Mater Interfaces; 2021 Jul; 13(29):35086-35096. PubMed ID: 34264063 [TBL] [Abstract][Full Text] [Related]
32. [Study on the back contact performances of cdte solar cells by XPS]. Song HJ; Zheng JG; Feng LH; Zhang JQ; Li W; Li B; Wu LL; Lei Z; Yan Q Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2737-40. PubMed ID: 19248472 [TBL] [Abstract][Full Text] [Related]
33. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency. Xin H; Vorpahl SM; Collord AD; Braly IL; Uhl AR; Krueger BW; Ginger DS; Hillhouse HW Phys Chem Chem Phys; 2015 Oct; 17(37):23859-66. PubMed ID: 26302694 [TBL] [Abstract][Full Text] [Related]
34. Post-growth process for flexible CdS/CdTe thin film solar cells with high specific power. Cho E; Kang Y; Kim D; Kim J Opt Express; 2016 May; 24(10):A791-6. PubMed ID: 27409952 [TBL] [Abstract][Full Text] [Related]
35. Recent advances in sensitized mesoscopic solar cells. Grätzel M Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294 [TBL] [Abstract][Full Text] [Related]
36. Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Dufton JT; Walsh A; Panchmatia PM; Peter LM; Colombara D; Islam MS Phys Chem Chem Phys; 2012 May; 14(20):7229-33. PubMed ID: 22514020 [TBL] [Abstract][Full Text] [Related]
37. Performance Comparison of CdTe:Na, CdTe:As, and CdTe:P Single Crystals for Solar Cell Applications. Kim S; Kim D; Hong J; Elmughrabi A; Melis A; Yeom JY; Park C; Cho S Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207948 [TBL] [Abstract][Full Text] [Related]
38. [Spectral analysis of effects of annealing on the characteristics of intrinsic SnO2 polycrystalline thin films]. Zeng GG; Zheng JG; Li B; Chen Q; Wu LL; Li W; Zhang JQ; Lei Z; Cai YP; Cai W; Feng LH Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Feb; 28(2):468-71. PubMed ID: 18479049 [TBL] [Abstract][Full Text] [Related]
39. Efficient Nanocrystal Photovoltaics via Blade Coating Active Layer. Xiao K; Huang Q; Luo J; Tang H; Xu A; Wang P; Ren H; Qin D; Xu W; Wang D Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34207563 [TBL] [Abstract][Full Text] [Related]
40. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Tian B; Zheng X; Kempa TJ; Fang Y; Yu N; Yu G; Huang J; Lieber CM Nature; 2007 Oct; 449(7164):885-9. PubMed ID: 17943126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]