These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23942185)

  • 1. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode.
    Chung YH; Lee T; Park HJ; Yun WS; Min J; Choi JW
    Nanotechnology; 2013 Sep; 24(36):365301. PubMed ID: 23942185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.
    Yagati AK; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2013 Feb; 40(1):283-90. PubMed ID: 22884649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale protein-based memory device composed of recombinant azurin.
    Kim SU; Yagati AK; Min J; Choi JW
    Biomaterials; 2010 Feb; 31(6):1293-8. PubMed ID: 19857891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification of surfactant CHAPS effect using AFM for making biomemory device consisting of recombinant azurin monolayer.
    Lee T; Ahmed El-Said W; Min J; Oh BK; Choi JW
    Ultramicroscopy; 2010 May; 110(6):712-7. PubMed ID: 20206446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-bit biomemory consisting of recombinant protein variants, azurin.
    Yagati AK; Kim SU; Min J; Choi JW
    Biosens Bioelectron; 2009 Jan; 24(5):1503-7. PubMed ID: 18809307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices.
    Strobel S; Sperling RA; Fenk B; Parak WJ; Tornow M
    Phys Chem Chem Phys; 2011 Jun; 13(21):9973-7. PubMed ID: 21387021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional 4-bit biomemory chip consisting of recombinant azurin variants.
    Lee T; Min J; Kim SU; Choi JW
    Biomaterials; 2011 May; 32(15):3815-21. PubMed ID: 21354614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant azurin-CdSe/ZnS hybrid structures for nanoscale resistive random access memory device.
    Yagati AK; Kim SU; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2017 Apr; 90():23-30. PubMed ID: 27871046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligonucleotide probes functionalization of nanogap electrodes.
    Zaffino RL; Mir M; Samitier J
    Electrophoresis; 2017 Nov; 38(21):2712-2720. PubMed ID: 28504351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanogap electrode fabrication for a nanoscale device by volume-expanding electrochemical synthesis.
    Kim JH; Moon H; Yoo S; Choi YK
    Small; 2011 Aug; 7(15):2210-6. PubMed ID: 21608123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-aligned sub-10-nm nanogap electrode array for large-scale integration.
    Gao P; Zhang Q; Li H; Chan-Park MB
    Small; 2011 Aug; 7(15):2195-200. PubMed ID: 21626689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust nanogap electrodes by self-terminating electroless gold plating.
    Serdio V VM; Azuma Y; Takeshita S; Muraki T; Teranishi T; Majima Y
    Nanoscale; 2012 Nov; 4(22):7161-7. PubMed ID: 23069983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using DC and large-amplitude Fourier transformed AC voltammetry.
    Fleming BD; Zhang J; Elton D; Bond AM
    Anal Chem; 2007 Sep; 79(17):6515-26. PubMed ID: 17668927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High precision fabrication and positioning of nanoelectrodes in a nanopore.
    Ivanov AP; Freedman KJ; Kim MJ; Albrecht T; Edel JB
    ACS Nano; 2014 Feb; 8(2):1940-8. PubMed ID: 24446951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocoax-based electrochemical sensor.
    Rizal B; Archibald MM; Connolly T; Shepard S; Burns MJ; Chiles TC; Naughton MJ
    Anal Chem; 2013 Nov; 85(21):10040-4. PubMed ID: 24090275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanogap biosensors for electrical and label-free detection of biomolecular interactions.
    Kyu Kim S; Cho H; Park HJ; Kwon D; Min Lee J; Hyun Chung B
    Nanotechnology; 2009 Nov; 20(45):455502. PubMed ID: 19822932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity.
    Ma C; Contento NM; Gibson LR; Bohn PW
    ACS Nano; 2013 Jun; 7(6):5483-90. PubMed ID: 23691968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing.
    Lu Y; Guo Z; Song JJ; Huang QA; Zhu SW; Huang XJ; Wei Y
    Anal Chim Acta; 2016 Jan; 905():58-65. PubMed ID: 26755137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital image analysis for measuring nanogap distance produced by adhesion lithography.
    Kano S; Kawazu T; Yamazaki A; Fujii M
    Nanotechnology; 2019 Jul; 30(28):285303. PubMed ID: 30913554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.