These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23942185)

  • 21. Nanogap-Based Electrochemical Measurements at Double-Carbon-Fiber Ultramicroelectrodes.
    Pathirathna P; Balla RJ; Amemiya S
    Anal Chem; 2018 Oct; 90(20):11746-11750. PubMed ID: 30251536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of nanogap separation by surface-catalyzed chemical deposition.
    Park HJ; Lee CY; Chung YH; Chi YS; Choi IS; Yun WS
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6400-3. PubMed ID: 22121723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dielectrophoretic assembly of single gold nanoparticle into nanogap electrodes.
    Yoon SH; Kumar S; Kim GH; Choi YS; Kim TW; Khondaker SI
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3427-33. PubMed ID: 19051890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical single-molecule detection in aqueous solution using self-aligned nanogap transducers.
    Kang S; Nieuwenhuis AF; Mathwig K; Mampallil D; Lemay SG
    ACS Nano; 2013 Dec; 7(12):10931-7. PubMed ID: 24279688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular crystal lithography: a facile and low-cost approach to fabricate nanogap electrodes.
    Jiang L; Dong H; Meng Q; Tan J; Jiang W; Xu C; Wang Z; Hu W
    Adv Mater; 2012 Feb; 24(5):694-8. PubMed ID: 22038893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanogap-based electrical PNA chips for the detection of genetic polymorphism of cytochrome P450 2C19.
    Park DK; Park HJ; Lee CY; Hong D; Lee Y; Choi IS; Yun WS
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5155-9. PubMed ID: 22966537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor.
    Hammond JL; Rosamond MC; Sivaraya S; Marken F; Estrela P
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasensitive electrical detection of protein using nanogap electrodes and nanoparticle-based DNA amplification.
    Chang TL; Tsai CY; Sun CC; Chen CC; Kuo LS; Chen PH
    Biosens Bioelectron; 2007 Jun; 22(12):3139-45. PubMed ID: 17368015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sub-5 nm nanogap electrodes towards single-molecular biosensing.
    He Q; Tang L
    Biosens Bioelectron; 2022 Oct; 213():114486. PubMed ID: 35749816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomolecule-nanoparticle hybrid systems for bioelectronic applications.
    Willner I; Willner B; Katz E
    Bioelectrochemistry; 2007 Jan; 70(1):2-11. PubMed ID: 16750941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical and experimental study towards a nanogap dielectric biosensor.
    Yi M; Jeong KH; Lee LP
    Biosens Bioelectron; 2005 Jan; 20(7):1320-6. PubMed ID: 15590285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale electrochemical kinetics & dynamics: the challenges and opportunities of single-entity measurements.
    Edwards MA; Robinson DA; Ren H; Cheyne CG; Tan CS; White HS
    Faraday Discuss; 2018 Oct; 210(0):9-28. PubMed ID: 30264833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanogap electrodes.
    Li T; Hu W; Zhu D
    Adv Mater; 2010 Jan; 22(2):286-300. PubMed ID: 20217688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multilevel biomemory device consisting of recombinant azurin/cytochrome C.
    Lee T; Kim SU; Min J; Choi JW
    Adv Mater; 2010 Jan; 22(4):510-4. PubMed ID: 20217744
    [No Abstract]   [Full Text] [Related]  

  • 35. Electrochemical characterization and application of azurin-modified gold electrodes for detection of superoxide.
    Shleev S; Wetterö J; Magnusson KE; Ruzgas T
    Biosens Bioelectron; 2006 Aug; 22(2):213-9. PubMed ID: 16442792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics.
    Iost RM; Crespilho FN
    Biosens Bioelectron; 2012 Jan; 31(1):1-10. PubMed ID: 22154167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distance-dependent electron transfer at passivated electrodes decorated by gold nanoparticles.
    Barfidokht A; Ciampi S; Luais E; Darwish N; Gooding JJ
    Anal Chem; 2013 Jan; 85(2):1073-80. PubMed ID: 23215046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of assembling ZnO nanoparticles into nanogap electrodes for nanoscale electronic device applications.
    Seo YK; Kumar S; Kim GH
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4852-62. PubMed ID: 21770114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Urchinlike MnO2 nanoparticles for the direct electrochemistry of hemoglobin with carbon ionic liquid electrode.
    Zhu Z; Qu L; Niu Q; Zeng Y; Sun W; Huang X
    Biosens Bioelectron; 2011 Jan; 26(5):2119-24. PubMed ID: 20926275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Nanoscale tailoring of the surface properties of biomaterials and drug carriers].
    Järvinen K; Jokiniemi J; Lammi M; Lappalainen R; Närvänen A; Pakkanen TA; Lehto VP
    Duodecim; 2012; 128(20):2085-92. PubMed ID: 23167167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.