These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23942355)

  • 1. Enhanced reactivity and related optical changes of Ag nanoparticles on amorphous Al₂O₃ supports.
    Peláez RJ; Castelo A; Afonso CN; Borrás A; Espinós JP; Riedel S; Leiderer P; Boneberg J
    Nanotechnology; 2013 Sep; 24(36):365702. PubMed ID: 23942355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nitrile species on Ag nanostructures supported on a-Al
    Peláez RJ; Espinós JP; Afonso CN
    Nanotechnology; 2017 Apr; 28(17):175709. PubMed ID: 28278132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation.
    Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S
    Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient plasmonic scattering of colloidal silver particles through annealing-induced changes.
    Ott A; Ring S; Yin G; Calvet W; Stannowski B; Schlatmann R; Ballauff M
    Nanotechnology; 2014 Nov; 25(45):455706. PubMed ID: 25338823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass.
    Haug J; Kruth H; Dubiel M; Hofmeister H; Haas S; Tatchev D; Hoell A
    Nanotechnology; 2009 Dec; 20(50):505705. PubMed ID: 19923657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag
    Wu Q; Si M; Zhang B; Zhang K; Li H; Mi L; Jiang Y; Rong Y; Chen J; Fang Y
    Nanotechnology; 2018 Jul; 29(29):295702. PubMed ID: 29697064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A label-free visual immunoassay on solid support with silver nanoparticles as plasmon resonance scattering indicator.
    Ling J; Li YF; Huang CZ
    Anal Biochem; 2008 Dec; 383(2):168-73. PubMed ID: 18793606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure.
    Chen Y; Su Y; Zheng X; Chen H; Yang H
    Water Res; 2012 Sep; 46(14):4379-86. PubMed ID: 22704928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas.
    Chen R; Nuhfer NT; Moussa L; Morris HR; Whitmore PM
    Nanotechnology; 2008 Nov; 19(45):455604. PubMed ID: 21832781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of gold nanoparticle films on glass by thermal embedding.
    Karakouz T; Maoz BM; Lando G; Vaskevich A; Rubinstein I
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):978-87. PubMed ID: 21388167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-selective surface-enhanced Raman scattering using silver and gold nanoparticles deposited on silicon-carbon core-shell nanowires.
    Baik SY; Cho YJ; Lim YR; Im HS; Jang DM; Myung Y; Park J; Kang HS
    ACS Nano; 2012 Mar; 6(3):2459-70. PubMed ID: 22314252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure.
    Qi J; Dang X; Hammond PT; Belcher AM
    ACS Nano; 2011 Sep; 5(9):7108-16. PubMed ID: 21815674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous synthesis and characterization of Ag and Ag-Au nanoparticles: addressing challenges in size, monodispersity and structure.
    Mott D; Thuy NT; Aoki Y; Maenosono S
    Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1927):4275-92. PubMed ID: 20732887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical bonding of nitrogen formed by nitridation of crystalline and amorphous aluminum oxide studied by X-ray photoelectron spectroscopy.
    Lawniczak-Jablonska K; Zytkiewicz ZR; Gieraltowska S; Sobanska M; Kuzmiuk P; Klosek K
    RSC Adv; 2020 Jul; 10(47):27932-27939. PubMed ID: 35519109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface plasmon spectroscopy.
    Della Gaspera E; Bersani M; Mattei G; Nguyen TL; Mulvaney P; Martucci A
    Nanoscale; 2012 Sep; 4(19):5972-9. PubMed ID: 22907103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles.
    Qi H; Alexson D; Glembocki O; Prokes SM
    Nanotechnology; 2010 May; 21(21):215706. PubMed ID: 20431201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.
    Ma R; Levard C; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2013 Mar; 47(6):2527-34. PubMed ID: 23425191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.