These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 2394243)

  • 21. Right atrial stretch activates neurons in autonomic brain regions that project to the rostral ventrolateral medulla in the rat.
    Kantzides A; Owens NC; De Matteo R; Badoer E
    Neuroscience; 2005; 133(3):775-86. PubMed ID: 15896916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular changes in nNOS protein expression within the ventrolateral medulla following transient focal ischemia affect cardiovascular functions.
    Ally A; Nauli SM; Maher TJ
    Brain Res; 2005 Sep; 1055(1-2):73-82. PubMed ID: 16084499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of catecholaminergic neurones of the caudal ventrolateral medulla in cardiovascular responses induced by acute changes in circulating volume in rats.
    Pedrino GR; Maurino I; de Almeida Colombari DS; Cravo SL
    Exp Physiol; 2006 Nov; 91(6):995-1005. PubMed ID: 16916893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cutaneous vascular bed is not involved in arterial pressure changes elicited by increasing or decreasing the activity of inhibitory vasomotor neurons in caudal ventrolateral medulla in rabbits.
    Blessing WW; Nalivaiko E
    Neurosci Lett; 2000 Aug; 290(2):141-4. PubMed ID: 10936697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reciprocal connection between nucleus ambiguus and caudal ventrolateral medulla.
    McKitrick DJ; Calaresu FR
    Brain Res; 1997 Oct; 770(1-2):213-20. PubMed ID: 9372221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responses of single units in the midline medulla to stimulation of the rostral ventrolateral medulla.
    King KA; McCall RB
    J Auton Nerv Syst; 1992 Oct; 40(3):255-60. PubMed ID: 1460237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depressor pathway involved in somatosympathetic reflex in cats.
    Goo YS; Kim SJ; Lim W; Kim J
    Neurosci Lett; 1996 Jan; 203(3):187-90. PubMed ID: 8742024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The vasomotor effects of nitrogen oxide administered into the structures of the ventrolateral area of the medulla oblongata in the cat].
    Shapoval LN; Sagach VF; Pobegaĭlo LS
    Dokl Akad Nauk SSSR; 1991; 317(6):1506-9. PubMed ID: 1909949
    [No Abstract]   [Full Text] [Related]  

  • 29. Evidence that GABA and glycine-like inputs inhibit vasodepressor neurons in the caudal ventrolateral medulla of the rabbit.
    Blessing WW; Reis DJ
    Neurosci Lett; 1983 May; 37(1):57-62. PubMed ID: 6877659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation of vasomotor- and respiratory-controlling mechanisms around the caudal ventrolateral medulla in cats.
    Yang KT; Su CK; Chai CY
    Neurosci Lett; 1999 Jul; 269(2):79-82. PubMed ID: 10430509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The interaction of pressor and depressor mechanisms in the autoregulation of arterial pressure].
    Sudakov KV; Rasulov MM
    Fiziol Zh SSSR Im I M Sechenova; 1975 Sep; 61(9):1388-96. PubMed ID: 1213202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitory vasomotor neurons in the caudal ventrolateral region of the medulla oblongata.
    Blessing WW; Li YW
    Prog Brain Res; 1989; 81():83-97. PubMed ID: 2694225
    [No Abstract]   [Full Text] [Related]  

  • 33. [Glycine immunoreactive neurons in the medulla oblongata in cats].
    Fort P; Luppi PH; Wenthold R; Jouvet M
    C R Acad Sci III; 1990; 311(5):205-12. PubMed ID: 2119868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ventrolateral medullary control of cardiovascular activity during muscle contraction.
    Ally A
    Neurosci Biobehav Rev; 1998; 23(1):65-86. PubMed ID: 9861613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The hyperpolarization of neurones of the medulla oblongata by glycine.
    Hösli L; Haas HL
    Experientia; 1972 Sep; 28(9):1057-8. PubMed ID: 4665298
    [No Abstract]   [Full Text] [Related]  

  • 36. Experiments on the origin of vasomotor tone [proceedings].
    Guertzenstein PG; Hilton SM; Marshall JM; Timms RJ
    J Physiol; 1978 Feb; 275():78P-79P. PubMed ID: 633179
    [No Abstract]   [Full Text] [Related]  

  • 37. [Formation of a generator of excitation in the gigantocellular nucleus of the medulla oblongata during disruption of inhibitory processes].
    Kryzhanovskiĭ GN; Sheĭkhon FD; Rekhtman MB
    Neirofiziologiia; 1975; 7(6):608-16. PubMed ID: 1207843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [ON THE FUNCTIONAL ORGANIZATION OF THE BULBAR VASOMOTOR CENTER. I. THE EXCITABILITY OF NEURONAL ELEMENTS OF THE PRESSOR AND DEPRESSOR ZONES IN DIFFERENT FUNCTIONAL CONDITIONS].
    BLINOVA AM; SARADZHEV NK; SHEIKHON FD
    Biull Eksp Biol Med; 1963 Apr; 55():3-9. PubMed ID: 14052922
    [No Abstract]   [Full Text] [Related]  

  • 39. Comparison of effects of noradrenaline and histamine with cyclic AMP on brain stem neurones.
    Anderson EG; Haas HL; Hösli L
    Brain Res; 1973 Jan; 49(2):471-5. PubMed ID: 4352735
    [No Abstract]   [Full Text] [Related]  

  • 40. The selectivity of descending vasomotor control by subretrofacial neurons.
    McAllen RM; Dampney RA
    Prog Brain Res; 1989; 81():233-42. PubMed ID: 2694221
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.