These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23942576)

  • 1. Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory.
    Kehoe AB; Temple DJ; Watson GW; Scanlon DO
    Phys Chem Chem Phys; 2013 Oct; 15(37):15477-84. PubMed ID: 23942576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells.
    Dufton JT; Walsh A; Panchmatia PM; Peter LM; Colombara D; Islam MS
    Phys Chem Chem Phys; 2012 May; 14(20):7229-33. PubMed ID: 22514020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.
    Kehoe AB; Scanlon DO; Watson GW
    J Phys Condens Matter; 2016 May; 28(17):175801. PubMed ID: 27033972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Investigation of the Structural, Elastic, Electronic, and Optical Properties of α- and β-SrZrS
    Eya HI; Ntsoenzok E; Dzade NY
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural diversity in supramolecular complexes of MCl(3) (M = As, Sb, Bi) with constrained thio- and seleno-ether ligands.
    Levason W; Maheshwari S; Ratnani R; Reid G; Webster M; Zhang W
    Inorg Chem; 2010 Oct; 49(19):9036-48. PubMed ID: 20812749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.
    Wang L; Cao B; Kang W; Hybertsen M; Maeda K; Domen K; Khalifah PG
    Inorg Chem; 2013 Aug; 52(16):9192-205. PubMed ID: 23901790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band Alignments, Band Gap, Core Levels, and Valence Band States in Cu
    Whittles TJ; Veal TD; Savory CN; Yates PJ; Murgatroyd PAE; Gibbon JT; Birkett M; Potter RJ; Major JD; Durose K; Scanlon DO; Dhanak VR
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27033-27047. PubMed ID: 31276370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles insights into the electronic structure, optical and band alignment properties of earth-abundant Cu
    Dzade NY
    Sci Rep; 2021 Feb; 11(1):4755. PubMed ID: 33637815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.
    Yang RX; Butler KT; Walsh A
    J Phys Chem Lett; 2015 Dec; 6(24):5009-14. PubMed ID: 26624204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides.
    Le Donne A; Trifiletti V; Binetti S
    Front Chem; 2019; 7():297. PubMed ID: 31114786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic Instability of Cs
    Xiao Z; Du KZ; Meng W; Wang J; Mitzi DB; Yan Y
    J Am Chem Soc; 2017 May; 139(17):6054-6057. PubMed ID: 28420237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the Impact of Chalcogen Content on the Photovoltaic Properties of Oxychalcogenide Perovkskites: NaMO
    Park H; Alharbi FH; Sanvito S; Tabet N; El-Mellouhi F
    Chemphyschem; 2018 Mar; 19(6):703-714. PubMed ID: 29144015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.
    Wong WY; Ho CL
    Acc Chem Res; 2010 Sep; 43(9):1246-56. PubMed ID: 20608673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.
    Hong F; Lin W; Meng W; Yan Y
    Phys Chem Chem Phys; 2016 Feb; 18(6):4828-34. PubMed ID: 26804024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core Levels, Band Alignments, and Valence-Band States in CuSbS
    Whittles TJ; Veal TD; Savory CN; Welch AW; de Souza Lucas FW; Gibbon JT; Birkett M; Potter RJ; Scanlon DO; Zakutayev A; Dhanak VR
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41916-41926. PubMed ID: 29124940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure of antifluorite Cu2X (X = S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U.
    Zhang Y; Wang Y; Xi L; Qiu R; Shi X; Zhang P; Zhang W
    J Chem Phys; 2014 Feb; 140(7):074702. PubMed ID: 24559355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of Novel Non-Silicon Materials for Photovoltaic Applications: A First-Principle Insight.
    Rasukkannu M; Velauthapillai D; Bianchini F; Vajeeston P
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30336564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles DFT insights into the structural, elastic, and optoelectronic properties of α and β-ZnP
    Živković A; Farkaš B; Uahengo V; de Leeuw NH; Dzade NY
    J Phys Condens Matter; 2019 Jul; 31(26):265501. PubMed ID: 30889559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology.
    Mitzi DB; Gunawan O; Todorov TK; Barkhouse DA
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110432. PubMed ID: 23816909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assessment of silver copper sulfides for photovoltaic applications: theoretical and experimental insights.
    Savory CN; Ganose AM; Travis W; Atri RS; Palgrave RG; Scanlon DO
    J Mater Chem A Mater; 2016 Aug; 4(32):12648-12657. PubMed ID: 27774149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.