BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23942821)

  • 1. TCNQ-embedded heptacene and nonacene: synthesis, characterization and physical properties.
    Ye Q; Chang J; Huang KW; Dai G; Chi C
    Org Biomol Chem; 2013 Oct; 11(37):6285-91. PubMed ID: 23942821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating TCNQ into thiophene-fused heptacene for n-channel field effect transistor.
    Ye Q; Chang J; Huang KW; Dai G; Zhang J; Chen ZK; Wu J; Chi C
    Org Lett; 2012 Jun; 14(11):2786-9. PubMed ID: 22578164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Charge-transfer compounds based on TCNQ: synthesis and spectroscopic properties].
    Wang PF; Chen YC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1372-4. PubMed ID: 18800726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic band structure of tetracene-TCNQ and perylene-TCNQ compounds.
    Shokaryev I; Buurma AJ; Jurchescu OD; Uijttewaal MA; de Wijs GA; Palstra TT; de Groot RA
    J Phys Chem A; 2008 Mar; 112(11):2497-502. PubMed ID: 18284219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF-TCNQ as the contact material.
    Xian X; Yan K; Zhou W; Jiao L; Wu Z; Liu Z
    Nanotechnology; 2009 Dec; 20(50):505204. PubMed ID: 19923654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic super-acceptors with efficient intramolecular charge-transfer interactions by [2+2] cycloadditions of TCNE, TCNQ, and F4-TCNQ to donor-substituted cyanoalkynes.
    Kivala M; Boudon C; Gisselbrecht JP; Enko B; Seiler P; Müller IB; Langer N; Jarowski PD; Gescheidt G; Diederich F
    Chemistry; 2009; 15(16):4111-23. PubMed ID: 19266523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step electrochemically directed synthesis of Pr4N(TCNQ)n (n=1, 2): preparation, structure, and properties of a magnetically isolated dimer and a quasi-one-dimensional chain.
    Qu X; Lu J; Boas JF; Bond AM; Martin LL
    Chemistry; 2011 Aug; 17(34):9350-8. PubMed ID: 21732430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the charge transport in single crystals of TCNQ, F
    Ji LF; Fan JX; Zhang SF; Ren AM
    Phys Chem Chem Phys; 2018 Jan; 20(5):3784-3794. PubMed ID: 29349447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-surface synthesis of heptacene and its interaction with a metal surface.
    Zugermeier M; Gruber M; Schmid M; Klein BP; Ruppenthal L; Müller P; Einholz R; Hieringer W; Berndt R; Bettinger HF; Gottfried JM
    Nanoscale; 2017 Aug; 9(34):12461-12469. PubMed ID: 28813050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Preparation and spectroscopic study of two new charge transfer salts].
    Chen YC; Liu GX; Wang M; Zhang MT; Ren XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Mar; 25(3):395-7. PubMed ID: 16013315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilely and efficiently tuning metal-organic nanostructures of a charge-transfer complex based on a water controlled nanoreaction and the chemistry of 7,7,8,8-tetracyanoquinodimethane (TCNQ).
    Song J; Ji Z; Nie Q; Hu W
    Nanoscale; 2014 Mar; 6(5):2573-6. PubMed ID: 24464276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F
    Sosorev AY
    Phys Chem Chem Phys; 2017 Sep; 19(37):25478-25486. PubMed ID: 28900645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexaazamacrocyclic nickel and copper complexes and their reactivity with tetracyanoquinodimethane.
    Ballester L; Gutiérrez A; Perpiñán MF; Sánchez AE; Fonari M; Gdaniec M
    Inorg Chem; 2007 May; 46(10):3946-55. PubMed ID: 17441711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibiting Low-Frequency Vibrations Explains Exceptionally High Electron Mobility in 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F
    Chernyshov IY; Vener MV; Feldman EV; Paraschuk DY; Sosorev AY
    J Phys Chem Lett; 2017 Jul; 8(13):2875-2880. PubMed ID: 28590744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes.
    Di CA; Yu G; Liu Y; Xu X; Wei D; Song Y; Sun Y; Wang Y; Zhu D; Liu J; Liu X; Wu D
    J Am Chem Soc; 2006 Dec; 128(51):16418-9. PubMed ID: 17177348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors.
    Di CA; Yu G; Liu Y; Guo Y; Wu W; Wei D; Zhu D
    Phys Chem Chem Phys; 2008 May; 10(17):2302-7. PubMed ID: 18414721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic coupling between metal spins through the 7,7,8,8-tetracyanoquinodimethane (TCNQ) dianion.
    Saber MR; Prosvirin AV; Abrahams BF; Elliott RW; Robson R; Dunbar KR
    Chemistry; 2014 Jun; 20(25):7593-7. PubMed ID: 24807853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concomitant Use of Tetrathiafulvalene and 7,7,8,8-Tetracyanoquinodimethane within the Skeletons of Metal-Organic Frameworks: Structures, Magnetism, and Electrochemistry.
    Wang HY; Su J; Ma JP; Yu F; Leong CF; D'Alessandro DM; Kurmoo M; Zuo JL
    Inorg Chem; 2019 Jul; 58(13):8657-8664. PubMed ID: 31187988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.
    Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R
    J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acenes generated from precursors and their semiconducting properties.
    Watanabe M; Chen KY; Chang YJ; Chow TJ
    Acc Chem Res; 2013 Jul; 46(7):1606-15. PubMed ID: 23611137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.