These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 23943002)
1. Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures. Niu Z; Zhang X; Wang S; Zeng M; Wang Z; Zhang Y; Ci Z Environ Sci Pollut Res Int; 2014 Jan; 21(2):1541-7. PubMed ID: 23943002 [TBL] [Abstract][Full Text] [Related]
2. Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.). Sun T; Wang Z; Zhang X; Niu Z; Chen J Environ Pollut; 2020 Oct; 265(Pt B):114890. PubMed ID: 32544787 [TBL] [Abstract][Full Text] [Related]
3. Field controlled experiments of mercury accumulation in crops from air and soil. Niu Z; Zhang X; Wang Z; Ci Z Environ Pollut; 2011 Oct; 159(10):2684-9. PubMed ID: 21723013 [TBL] [Abstract][Full Text] [Related]
4. Foliar exchange of mercury as a function of soil and air mercury concentrations. Ericksen JA; Gustin MS Sci Total Environ; 2004 May; 324(1-3):271-9. PubMed ID: 15081712 [TBL] [Abstract][Full Text] [Related]
5. The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution. Niu Z; Zhang X; Wang S; Ci Z; Kong X; Wang Z Environ Sci Pollut Res Int; 2013 Sep; 20(9):6337-43. PubMed ID: 23589268 [TBL] [Abstract][Full Text] [Related]
6. Elevated CO Mao Q; Tang L; Ji W; Rennenberg H; Hu B; Ma M Ecotoxicol Environ Saf; 2021 Jan; 208():111605. PubMed ID: 33396125 [TBL] [Abstract][Full Text] [Related]
7. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil. Millhollen AG; Obrist D; Gustin MS Chemosphere; 2006 Oct; 65(5):889-97. PubMed ID: 16631233 [TBL] [Abstract][Full Text] [Related]
8. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings. Hou M; Li M; Yang X; Pan R Bull Environ Contam Toxicol; 2019 Mar; 102(3):425-431. PubMed ID: 30683955 [TBL] [Abstract][Full Text] [Related]
9. Effects of enhanced atmospheric ammonia on physiological characteristics of maize(Zea mays L.). Chen X; Li S J Sci Food Agric; 2013 Sep; 93(12):3094-9. PubMed ID: 23526362 [TBL] [Abstract][Full Text] [Related]
10. Foliar mercury accumulation and exchange for three tree species. Millhollen AG; Gustin MS; Obrist D Environ Sci Technol; 2006 Oct; 40(19):6001-6. PubMed ID: 17051791 [TBL] [Abstract][Full Text] [Related]
11. Mercury distribution in the soil-plant-air system at the Wanshan mercury mining district in Guizhou, Southwest China. Wang J; Feng X; Anderson CW; Zhu W; Yin R; Wang H Environ Toxicol Chem; 2011 Dec; 30(12):2725-31. PubMed ID: 21935979 [TBL] [Abstract][Full Text] [Related]
12. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Rehman MZ; Rizwan M; Ali S; Fatima N; Yousaf B; Naeem A; Sabir M; Ahmad HR; Ok YS Ecotoxicol Environ Saf; 2016 Nov; 133():218-25. PubMed ID: 27467022 [TBL] [Abstract][Full Text] [Related]
13. Environmental mercury contamination of an artisanal zinc smelting area in Weining County, Guizhou, China. Li G; Feng X; Qiu G; Bi X; Li Z; Zhang C; Wang D; Shang L; Guo Y Environ Pollut; 2008 Jul; 154(1):21-31. PubMed ID: 18162270 [TBL] [Abstract][Full Text] [Related]
14. The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress. Mohammadi S; Pourakbar L; Siavash Moghaddam S; Popović-Djordjević J Ecotoxicol Environ Saf; 2021 Jan; 208():111607. PubMed ID: 33396127 [TBL] [Abstract][Full Text] [Related]
15. [Open-top Chamber for in situ Research on Response of Mercury Enrichment in Rice to the Rising Gaseous Elemental Mercury in the Atmosphere]. Chen J; Wang ZW; Zhang XS; Qin PF; Lu HJ Huan Jing Ke Xue; 2015 Aug; 36(8):2997-3003. PubMed ID: 26592032 [TBL] [Abstract][Full Text] [Related]
16. Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships. Peng J; Shang B; Xu Y; Feng Z; Calatayud V Environ Pollut; 2020 Jan; 256():113466. PubMed ID: 31679879 [TBL] [Abstract][Full Text] [Related]
17. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy. Pierce AM; Moore CW; Wohlfahrt G; Hörtnagl L; Kljun N; Obrist D Environ Sci Technol; 2015 Feb; 49(3):1559-68. PubMed ID: 25608027 [TBL] [Abstract][Full Text] [Related]
18. [Mercury exchange fluxes between air and soil interface over different type of land in Wanshan Hg mine area]. Wang SF; Feng XB; Qiu GL; Fu XW Huan Jing Ke Xue; 2006 Aug; 27(8):1487-94. PubMed ID: 17111599 [TBL] [Abstract][Full Text] [Related]
19. Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population. Fu Z; Li W; Zhang Q; Wang L; Zhang X; Song G; Fu Z; Ding D; Liu Z; Tang J PLoS One; 2014; 9(9):e107243. PubMed ID: 25210737 [TBL] [Abstract][Full Text] [Related]
20. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil. Obrist D; Pokharel AK; Moore C Environ Sci Technol; 2014 Feb; 48(4):2242-52. PubMed ID: 24428735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]