These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 23943002)
21. Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment. Sun G; Feng X; Yin R; Zhao H; Zhang L; Sommar J; Li Z; Zhang H Environ Int; 2019 Oct; 131():104971. PubMed ID: 31284107 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of leafy vegetables as bioindicators of gaseous mercury pollution in sewage-irrigated areas. Zheng SA; Wu Z; Chen C; Liang J; Huang H; Zheng X Environ Sci Pollut Res Int; 2018 Jan; 25(1):413-421. PubMed ID: 29043585 [TBL] [Abstract][Full Text] [Related]
23. Nonstomatal versus stomatal uptake of atmospheric mercury. Stamenkovic J; Gustin MS Environ Sci Technol; 2009 Mar; 43(5):1367-72. PubMed ID: 19350905 [TBL] [Abstract][Full Text] [Related]
24. Factors influencing mercury uptake by leaves of stone pine (Pinus pinea L.) in Almadén (Central Spain). Barquero JI; Rojas S; Esbrí JM; García-Noguero EM; Higueras P Environ Sci Pollut Res Int; 2019 Feb; 26(4):3129-3137. PubMed ID: 29090438 [TBL] [Abstract][Full Text] [Related]
25. Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Tanwir K; Javed MT; Abbas S; Shahid M; Akram MS; Chaudhary HJ; Iqbal M Ecotoxicol Environ Saf; 2021 Jan; 208():111584. PubMed ID: 33396107 [TBL] [Abstract][Full Text] [Related]
26. Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry. Girotto E; Ceretta CA; Rossato LV; Farias JG; Tiecher TL; De Conti L; Schmatz R; Brunetto G; Schetinger MR; Nicoloso FT Ecotoxicol Environ Saf; 2013 Jul; 93():145-55. PubMed ID: 23669342 [TBL] [Abstract][Full Text] [Related]
27. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668 [TBL] [Abstract][Full Text] [Related]
28. Reshaping the root endophytic microbiota in plants to combat mercury-induced stress. Feng T; Liu Y; Huang M; Chen G; Tian Q; Duan C; Chen J Sci Total Environ; 2024 Oct; 945():174019. PubMed ID: 38885713 [TBL] [Abstract][Full Text] [Related]
29. Soil-air exchange of mercury from agricultural fields in Zhejiang, East China: Seasonal variations, influence factors, and models of fluxes. Shi T; Gong Y; Ma J; Wu H; Yang S; Ju T; Qu Y; Liu L Chemosphere; 2020 Jun; 249():126063. PubMed ID: 32058128 [TBL] [Abstract][Full Text] [Related]
30. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Rafique M; Ortas I; Rizwan M; Sultan T; Chaudhary HJ; Işik M; Aydin O Environ Sci Pollut Res Int; 2019 Jul; 26(20):20689-20700. PubMed ID: 31104234 [TBL] [Abstract][Full Text] [Related]
32. Water deficit aggravated the inhibition of photosynthetic performance of maize under mercury stress but is alleviated by brassinosteroids. Tang Y; Zhang J; Wang L; Wang H; Long H; Yang L; Li G; Guo J; Wang Y; Li Y; Yang Q; Shi W; Shao R J Hazard Mater; 2023 Feb; 443(Pt B):130365. PubMed ID: 36444077 [TBL] [Abstract][Full Text] [Related]
33. Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.). Li Y; Guan J; Zhao J; Li B; Li YF; Gao Y Ecotoxicol Environ Saf; 2020 Jan; 188():109897. PubMed ID: 31704327 [TBL] [Abstract][Full Text] [Related]
34. Mercury uptake into poplar leaves. Assad M; Parelle J; Cazaux D; Gimbert F; Chalot M; Tatin-Froux F Chemosphere; 2016 Mar; 146():1-7. PubMed ID: 26694893 [TBL] [Abstract][Full Text] [Related]
35. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms. Stamenkovic J; Gustin MS; Arnone JA; Johnson DW; Larsen JD; Verburg PS Sci Total Environ; 2008 Nov; 406(1-2):227-38. PubMed ID: 18775555 [TBL] [Abstract][Full Text] [Related]
36. [Contribution to vegetable mercury from atmosphere and soil]. Liu D; Qing C Ying Yong Sheng Tai Xue Bao; 2002 Mar; 13(3):315-8. PubMed ID: 12132161 [TBL] [Abstract][Full Text] [Related]
37. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Xie Z; Song F; Xu H; Shao H; Song R ScientificWorldJournal; 2014; 2014():718716. PubMed ID: 24982984 [TBL] [Abstract][Full Text] [Related]
38. Estimation of mercury uptake and distinction of corn cultivation in China. Wang D; Li Z; Wang Q Sci Total Environ; 2024 Jan; 906():167508. PubMed ID: 37788774 [TBL] [Abstract][Full Text] [Related]
39. Overall plant responses to Cd and Pb metal stress in maize: Growth pattern, ultrastructure, and photosynthetic activity. Figlioli F; Sorrentino MC; Memoli V; Arena C; Maisto G; Giordano S; Capozzi F; Spagnuolo V Environ Sci Pollut Res Int; 2019 Jan; 26(2):1781-1790. PubMed ID: 30456613 [TBL] [Abstract][Full Text] [Related]
40. Accumulation and translocation of 198Hg in four crop species. Cui L; Feng X; Lin CJ; Wang X; Meng B; Wang X; Wang H Environ Toxicol Chem; 2014 Feb; 33(2):334-40. PubMed ID: 24173818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]