These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23943267)

  • 1. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.
    Zucker RM; Daniel KM; Massaro EJ; Karafas SJ; Degn LL; Boyes WK
    Cytometry A; 2013 Oct; 83(10):962-72. PubMed ID: 23943267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical comparison of four silver nanoparticles coatings using microscopy, hyperspectral imaging and flow cytometry.
    Zucker RM; Ortenzio J; Degn LL; Lerner JM; Boyes WK
    PLoS One; 2019; 14(7):e0219078. PubMed ID: 31365549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Massaro EJ; Sanders KM; Degn LL; Boyes WK
    Cytometry A; 2010 Jul; 77(7):677-85. PubMed ID: 20564539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Silver and TiO
    Zucker RM; Boyes WK
    Methods Mol Biol; 2020; 2118():415-436. PubMed ID: 32152995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization, detection, and counting of metal nanoparticles using flow cytometry.
    Zucker RM; Ortenzio JN; Boyes WK
    Cytometry A; 2016 Feb; 89(2):169-83. PubMed ID: 26619039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Daniel KM
    Methods Mol Biol; 2012; 906():497-509. PubMed ID: 22791459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.
    Koopmans GF; Hiemstra T; Regelink IC; Molleman B; Comans RN
    J Chromatogr A; 2015 May; 1392():100-9. PubMed ID: 25798868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Silver Nanoparticle Dose
    Ortenzio J; Degn L; Goldstein-Plesser A; McGee JK; Navratilova J; Rogers K; Zucker RM; Boyes WK
    NanoImpact; 2019 Apr; 14():100156. PubMed ID: 34316524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticles for the detection of cell surface antigens in mass cytometry.
    Schulz AR; Stanislawiak S; Baumgart S; Grützkau A; Mei HE
    Cytometry A; 2017 Jan; 91(1):25-33. PubMed ID: 27351740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE.
    Li H; Qiang W; Vuki M; Xu D; Chen HY
    Anal Chem; 2011 Dec; 83(23):8945-52. PubMed ID: 21988285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy.
    Zucker RM; Ortenzio J; Degn LL; Boyes WK
    PLoS One; 2020; 15(12):e0240268. PubMed ID: 33259485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of Dark-Field and Confocal Microscopy for the Optical Detection of Silver and Titanium Nanoparticles in Mammalian Cells.
    Zucker RM; Boyes WK
    Methods Mol Biol; 2020; 2118():395-414. PubMed ID: 32152994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometry evaluation of in vitro cellular necrosis and apoptosis induced by silver nanoparticles.
    Kumar G; Degheidy H; Casey BJ; Goering PL
    Food Chem Toxicol; 2015 Nov; 85():45-51. PubMed ID: 26115599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced flow cytometry-based bead immunoassays using metal nanostructures.
    Deng W; Drozdowicz-Tomsia K; Jin D; Goldys EM
    Anal Chem; 2009 Sep; 81(17):7248-55. PubMed ID: 19715357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells.
    Nymark P; Catalán J; Suhonen S; Järventaus H; Birkedal R; Clausen PA; Jensen KA; Vippola M; Savolainen K; Norppa H
    Toxicology; 2013 Nov; 313(1):38-48. PubMed ID: 23142790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis.
    Suzuki H; Toyooka T; Ibuki Y
    Environ Sci Technol; 2007 Apr; 41(8):3018-24. PubMed ID: 17533873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopy imaging methods for the detection of silver and titanium nanoparticles within cells.
    Zucker RM; Daniel KM
    Methods Mol Biol; 2012; 906():483-96. PubMed ID: 22791458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flow cytometric analysis of macrophage- nanoparticle interactions in vitro: induction of altered Toll-like receptor expression.
    Njoroge JM; Yourick JJ; Principato MA
    Int J Nanomedicine; 2018; 13():8365-8378. PubMed ID: 30587965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells.
    Farkas J; Christian P; Gallego-Urrea JA; Roos N; Hassellöv M; Tollefsen KE; Thomas KV
    Aquat Toxicol; 2011 Jan; 101(1):117-25. PubMed ID: 20952077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.