These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23943513)

  • 1. The role of kinematics in cortical regions for continuous human motion perception.
    McAleer P; Pollick FE; Love SA; Crabbe F; Zacks JM
    Cogn Affect Behav Neurosci; 2014 Mar; 14(1):307-18. PubMed ID: 23943513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
    Ma F; Xu J; Li X; Wang P; Wang B; Liu B
    Exp Brain Res; 2018 Mar; 236(3):907-918. PubMed ID: 29362830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and subcortical responses to biological motion.
    Chang DHF; Ban H; Ikegaya Y; Fujita I; Troje NF
    Neuroimage; 2018 Jul; 174():87-96. PubMed ID: 29524623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.
    Jastorff J; Orban GA
    J Neurosci; 2009 Jun; 29(22):7315-29. PubMed ID: 19494153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural interactions in occipitotemporal cortex during basic human movement perception by dynamic causal modeling.
    Gu J; Liu B; Sun X; Ma F; Li X
    Brain Imaging Behav; 2021 Feb; 15(1):231-243. PubMed ID: 32141031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct neural mechanisms for body form and body motion discriminations.
    Vangeneugden J; Peelen MV; Tadin D; Battelli L
    J Neurosci; 2014 Jan; 34(2):574-85. PubMed ID: 24403156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI.
    Ahlfors SP; Simpson GV; Dale AM; Belliveau JW; Liu AK; Korvenoja A; Virtanen J; Huotilainen M; Tootell RB; Aronen HJ; Ilmoniemi RJ
    J Neurophysiol; 1999 Nov; 82(5):2545-55. PubMed ID: 10561425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural adaptation in pSTS correlates with perceptual aftereffects to biological motion and with autistic traits.
    Thurman SM; van Boxtel JJ; Monti MM; Chiang JN; Lu H
    Neuroimage; 2016 Aug; 136():149-61. PubMed ID: 27164327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of motion in the neural representation of social interactions in the posterior temporal cortex.
    Landsiedel J; Daughters K; Downing PE; Koldewyn K
    Neuroimage; 2022 Nov; 262():119533. PubMed ID: 35931309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goal-directed actions activate the face-sensitive posterior superior temporal sulcus and fusiform gyrus in the absence of human-like perceptual cues.
    Shultz S; McCarthy G
    Cereb Cortex; 2012 May; 22(5):1098-106. PubMed ID: 21768227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reading about the actions of others: biological motion imagery and action congruency influence brain activity.
    Deen B; McCarthy G
    Neuropsychologia; 2010 May; 48(6):1607-15. PubMed ID: 20138900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion.
    Peelen MV; Wiggett AJ; Downing PE
    Neuron; 2006 Mar; 49(6):815-22. PubMed ID: 16543130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of dorsal and ventral stream development in biological motion perception.
    Lichtensteiger J; Loenneker T; Bucher K; Martin E; Klaver P
    Neuroreport; 2008 Dec; 19(18):1763-7. PubMed ID: 18955908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Correlates of Animacy Attribution Include Neocerebellum in Healthy Adults.
    Jack A; Pelphrey KA
    Cereb Cortex; 2015 Nov; 25(11):4240-7. PubMed ID: 24981794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attributing intentions to random motion engages the posterior superior temporal sulcus.
    Lee SM; Gao T; McCarthy G
    Soc Cogn Affect Neurosci; 2014 Jan; 9(1):81-7. PubMed ID: 22983598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation-Based Feature Representation of Body Expressions in the Human Brain.
    Poyo Solanas M; Vaessen M; de Gelder B
    Cereb Cortex; 2020 Nov; 30(12):6376-6390. PubMed ID: 32770200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognizing approaching walkers: Neural decoding of person familiarity in cortical areas responsive to faces, bodies, and biological motion.
    Hahn CA; O'Toole AJ
    Neuroimage; 2017 Feb; 146():859-868. PubMed ID: 27989842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential selectivity for dynamic versus static information in face-selective cortical regions.
    Pitcher D; Dilks DD; Saxe RR; Triantafyllou C; Kanwisher N
    Neuroimage; 2011 Jun; 56(4):2356-63. PubMed ID: 21473921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-brain haemodynamic after-effects of 1-Hz magnetic stimulation of the posterior superior temporal cortex during action observation.
    Arfeller C; Schwarzbach J; Ubaldi S; Ferrari P; Barchiesi G; Cattaneo L
    Brain Topogr; 2013 Apr; 26(2):278-91. PubMed ID: 22772359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency.
    Kontaris I; Wiggett AJ; Downing PE
    Neuropsychologia; 2009 Dec; 47(14):3118-24. PubMed ID: 19643118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.