These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2394372)

  • 1. Caffeine and the myoplasmic calcium removal mechanisms in cut frog skeletal muscle fibres.
    Csernoch L; Kovács L; Nilius B; Szücs G
    Gen Physiol Biophys; 1990 Jun; 9(3):251-66. PubMed ID: 2394372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog.
    Kovács L; Szücs G
    J Physiol; 1983 Aug; 341():559-78. PubMed ID: 6604806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of physostigmine on the excitation-contraction coupling of skeletal muscle fibres.
    Szücs G; Fuxreiter M; Sirkó E; Szállási A
    Acta Physiol Hung; 1983; 62(1):61-73. PubMed ID: 6316729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of birefringence signals and calcium transients in voltage-clamped cut skeletal muscle fibres of the frog.
    Kovács L; Schümperli RA; Szücs G
    J Physiol; 1983 Aug; 341():579-93. PubMed ID: 6604807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discoupling of excitation-contraction processes by urea treatment of frog skeletal muscle.
    Gesztelyi I; Kathó J; Kövér A
    Acta Physiol Hung; 1986; 67(3):283-91. PubMed ID: 3489351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The removal of myoplasmic free calcium following calcium release in frog skeletal muscle.
    Melzer W; Ríos E; Schneider MF
    J Physiol; 1986 Mar; 372():261-92. PubMed ID: 3487641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of 2,3-butanedione monoxime on calcium signals in frog cut twitch fibres containing antipyrylazo III.
    Maylie J; Hui CS
    J Physiol; 1991 Oct; 442():551-67. PubMed ID: 1798042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The action of homologous n-alkanols on functional properties of isolated skeletal muscles. 3. Alcohol and caffeine contractures].
    Kössler F; Caffier G; Küchler G
    Acta Biol Med Ger; 1974; 32(6):651-8. PubMed ID: 4547352
    [No Abstract]   [Full Text] [Related]  

  • 10. Caffeine potentiation of calcium release in frog skeletal muscle fibres.
    Delay M; Ribalet B; Vergara J
    J Physiol; 1986 Jun; 375():535-59. PubMed ID: 3795067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of low myoplasmic Mg2+ on calcium binding by parvalbumin and calcium uptake by the sarcoplasmic reticulum in frog skeletal muscle.
    Jacquemond V; Schneider MF
    J Gen Physiol; 1992 Jul; 100(1):115-35. PubMed ID: 1512554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local oscillations of frog skeletal muscle sarcomeres induced by subthreshold concentration of caffeine.
    Poledna J; Simurdová A
    Gen Physiol Biophys; 1992 Dec; 11(6):513-21. PubMed ID: 1292951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of homologous n-alcanoic acids on the function properties of isolated skeletal muscles. III. Contractures by fatty acids and relations to the effects of caffeine].
    Kössler F; Küchler G
    Acta Biol Med Ger; 1977; 36(7-8):1085-95. PubMed ID: 306181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation by adrenaline of electrophysiological membrane parameters and contractility in intact and internally perfused single muscle fibres of the crayfish.
    Zacharová D; Lipská E; Hencek M; Hochmannová J; Sajter V
    Gen Physiol Biophys; 1993 Dec; 12(6):543-77. PubMed ID: 8070646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Two components of calcium-dependent potassium permeability coexist in the membrane of frog skeletal muscle].
    Traoré F; Cognard C; Potreau D; Raymond G
    C R Acad Sci III; 1987; 305(3):69-72. PubMed ID: 2441824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Pb2+ ions on calcium currents and contractility in single muscle fibres of the crayfish.
    Zacharová D; Hencek M; Pavelková J; Lipská E
    Gen Physiol Biophys; 1993 Apr; 12(2):183-98. PubMed ID: 8405921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depression of calcium transients after exposure to high K+ solution in Li(+)-loaded frog twitch muscle fibres and its reversal by exogenous myo-inositol.
    Fu DX; Zhu PH
    Sci China B; 1993 Feb; 36(2):204-13. PubMed ID: 8318152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium release by caffeine and other methylxanthines in skinned skeletal muscle fibres [proceedings].
    Miller DJ; Thieleczek R
    J Physiol; 1977 Dec; 273(2):67P-68P. PubMed ID: 304485
    [No Abstract]   [Full Text] [Related]  

  • 19. The site of action of AHR-2666 in frog sartorius muscle.
    Lustig KC; Kirsten EB
    J Pharmacol Exp Ther; 1974 Oct; 191(1):156-63. PubMed ID: 4547606
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetics of contractile activation in voltage clamped frog skeletal muscle fibers.
    Szentesi P; Papp Z; Szücs G; Kovács L; Csernoch L
    Biophys J; 1997 Oct; 73(4):1999-2011. PubMed ID: 9336195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.