BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23944216)

  • 21. Efficacy of gene transfer through the round window membrane: an in vitro model.
    Aarnisalo AA; Aarnisalo P; Pietola L; Wahlfors J; Jero J
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(4):220-7. PubMed ID: 16549937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea.
    Bu M; Tang J; Wei Y; Sun Y; Wang X; Wu L; Liu H
    Int J Nanomedicine; 2015; 10():6879-89. PubMed ID: 26604754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine.
    Scheler S; Kitzan M; Fahr A
    Int J Pharm; 2011 Jan; 403(1-2):207-18. PubMed ID: 20969936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear.
    Yoon JY; Yang KJ; Kim DE; Lee KY; Park SN; Kim DK; Kim JD
    Biomaterials; 2015 Dec; 73():243-53. PubMed ID: 26414408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A prestin-targeting peptide-guided drug delivery system rearranging concentration gradient in the inner ear: An improved strategy against hearing loss.
    Wang X; Zhou Z; Yu C; He K; Sun L; Kou Y; Zhang M; Zhang Z; Luo P; Wen L; Chen G
    Eur J Pharm Sci; 2023 Aug; 187():106490. PubMed ID: 37295658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles.
    Kim DK; Park SN; Park KH; Park CW; Yang KJ; Kim JD; Kim MS
    Drug Deliv; 2015 May; 22(3):367-74. PubMed ID: 24447111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Benchtop Round Window Model for Studying Magnetic Nanoparticle Transport to the Inner Ear.
    Goyal MM; Shen SA; Lehar M; Martinez A; Hiel H; Wang C; Liu Y; Wang C; Sun DQ
    Laryngoscope; 2024 Jul; 134(7):3355-3362. PubMed ID: 38379206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concentration gradient along the scala tympani after local application of gentamicin to the round window membrane.
    Plontke SK; Mynatt R; Gill RM; Borgmann S; Salt AN
    Laryngoscope; 2007 Jul; 117(7):1191-8. PubMed ID: 17603318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel flower-shaped albumin particles as controlled-release carriers for drugs to penetrate the round-window membrane.
    Yu Z; Yu M; Zhou Z; Zhang Z; Du B; Xiong Q
    Int J Nanomedicine; 2014; 9():3193-201. PubMed ID: 25061296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs.
    Du X; Chen K; Kuriyavar S; Kopke RD; Grady BP; Bourne DH; Li W; Dormer KJ
    Otol Neurotol; 2013 Jan; 34(1):41-7. PubMed ID: 23187928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.
    Aravind A; Jeyamohan P; Nair R; Veeranarayanan S; Nagaoka Y; Yoshida Y; Maekawa T; Kumar DS
    Biotechnol Bioeng; 2012 Nov; 109(11):2920-31. PubMed ID: 22615073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Permeability of the round window membrane.
    Okuno T; Nomura Y
    Arch Otorhinolaryngol; 1984; 240(2):103-6. PubMed ID: 6591901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release.
    Chhabra R; Grabrucker AM; Veratti P; Belletti D; Boeckers TM; Vandelli MA; Forni F; Tosi G; Ruozi B
    Int J Pharm; 2014 Aug; 471(1-2):349-57. PubMed ID: 24882034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated multiplatform method for in vitro quantitative assessment of cellular uptake for fluorescent polymer nanoparticles.
    Ferrari R; Lupi M; Falcetta F; Bigini P; Paolella K; Fiordaliso F; Bisighini C; Salmona M; D'Incalci M; Morbidelli M; Moscatelli D; Ubezio P
    Nanotechnology; 2014 Jan; 25(4):045102. PubMed ID: 24398665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absolute quantitation of sub-micrometer particles in cells by flow cytometry.
    Höcherl A; Landfester K; Mailänder V
    Macromol Biosci; 2013 Nov; 13(11):1568-75. PubMed ID: 23966275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.
    He C; Hu Y; Yin L; Tang C; Yin C
    Biomaterials; 2010 May; 31(13):3657-66. PubMed ID: 20138662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative evaluation of the degree of pegylation of poly(lactic-co-glycolic acid) nanoparticles in enhancing central nervous system delivery of loperamide.
    Kirby BP; Pabari R; Chen CN; Al Baharna M; Walsh J; Ramtoola Z
    J Pharm Pharmacol; 2013 Oct; 65(10):1473-81. PubMed ID: 24028614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow.
    Huang K; Boerhan R; Liu C; Jiang G
    Mol Pharm; 2017 Dec; 14(12):4618-4627. PubMed ID: 29096441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle surface charges alter blood-brain barrier integrity and permeability.
    Lockman PR; Koziara JM; Mumper RJ; Allen DD
    J Drug Target; 2004; 12(9-10):635-41. PubMed ID: 15621689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.