These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury. Shimokochi Y; Ambegaonkar JP; Meyer EG; Lee SY; Shultz SJ Knee Surg Sports Traumatol Arthrosc; 2013 Apr; 21(4):888-97. PubMed ID: 22543471 [TBL] [Abstract][Full Text] [Related]
9. Ankle-dorsiflexion range of motion and landing biomechanics. Fong CM; Blackburn JT; Norcross MF; McGrath M; Padua DA J Athl Train; 2011; 46(1):5-10. PubMed ID: 21214345 [TBL] [Abstract][Full Text] [Related]
10. Individuals with chronic ankle instability exhibit altered landing knee kinematics: potential link with the mechanism of loading for the anterior cruciate ligament. Terada M; Pietrosimone B; Gribble PA Clin Biomech (Bristol); 2014 Dec; 29(10):1125-30. PubMed ID: 25306177 [TBL] [Abstract][Full Text] [Related]
11. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks. Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692 [TBL] [Abstract][Full Text] [Related]
12. Visual-Motor Control of Drop Landing After Anterior Cruciate Ligament Reconstruction. Grooms DR; Chaudhari A; Page SJ; Nichols-Larsen DS; Onate JA J Athl Train; 2018 May; 53(5):486-496. PubMed ID: 29749751 [TBL] [Abstract][Full Text] [Related]
13. Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears. Bates NA; Schilaty ND; Nagelli CV; Krych AJ; Hewett TE Am J Sports Med; 2019 Jul; 47(8):1844-1853. PubMed ID: 31150273 [TBL] [Abstract][Full Text] [Related]
14. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics. Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC Am J Sports Med; 2015 Nov; 43(11):2727-37. PubMed ID: 26359376 [TBL] [Abstract][Full Text] [Related]
15. Jump-landing biomechanics and knee-laxity change across the menstrual cycle in women with anterior cruciate ligament reconstruction. Bell DR; Blackburn JT; Hackney AC; Marshall SW; Beutler AI; Padua DA J Athl Train; 2014; 49(2):154-62. PubMed ID: 24568229 [TBL] [Abstract][Full Text] [Related]
16. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury. Haddas R; Hooper T; James CR; Sizer PS J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298 [TBL] [Abstract][Full Text] [Related]
19. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury. Norcross MF; Blackburn JT; Goerger BM; Padua DA Clin Biomech (Bristol); 2010 Dec; 25(10):1031-6. PubMed ID: 20797812 [TBL] [Abstract][Full Text] [Related]
20. Quadriceps Neuromuscular Function and Jump-Landing Sagittal-Plane Knee Biomechanics After Anterior Cruciate Ligament Reconstruction. Ward SH; Blackburn JT; Padua DA; Stanley LE; Harkey MS; Luc-Harkey BA; Pietrosimone B J Athl Train; 2018 Feb; 53(2):135-143. PubMed ID: 29350554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]