These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23944413)

  • 1. Thermal fluctuations of hydrodynamic flows in nanochannels.
    Detcheverry F; Bocquet L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012106. PubMed ID: 23944413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal fluctuations in nanofluidic transport.
    Detcheverry F; Bocquet L
    Phys Rev Lett; 2012 Jul; 109(2):024501. PubMed ID: 23030164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamics of discrete-particle models of spherical colloids: a multiparticle collision dynamics simulation study.
    Poblete S; Wysocki A; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033314. PubMed ID: 25314571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational diffusion of proteins in nanochannels.
    Kannam SK; Downton MT
    J Chem Phys; 2017 Feb; 146(5):054108. PubMed ID: 28178811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.
    Uma B; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Mol Phys; 2012; 110(11-12):1057-1067. PubMed ID: 22865935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics and molecular dynamics simulations.
    Voulgarakis NK; Satish S; Chu JW
    J Chem Phys; 2009 Dec; 131(23):234115. PubMed ID: 20025322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
    Ramesh KV; Thaokar R; Prakash JR; Prabhakar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022302. PubMed ID: 25768500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between hydrodynamics and the free energy surface in the assembly of nanoscale hydrophobes.
    Morrone JA; Li J; Berne BJ
    J Phys Chem B; 2012 Jan; 116(1):378-89. PubMed ID: 22142269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.
    Bhadauria R; Sanghi T; Aluru NR
    J Chem Phys; 2015 Nov; 143(17):174702. PubMed ID: 26547177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic enhancement of the diffusion rate in the region between two fluctuating membranes in close opposition: a theoretical and computational study.
    Pannuzzo M; Grassi A; Raudino A
    J Phys Chem B; 2014 Jul; 118(29):8662-72. PubMed ID: 24992344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quasi-continuum hydrodynamic model for slit shaped nanochannel flow.
    Bhadauria R; Aluru NR
    J Chem Phys; 2013 Aug; 139(7):074109. PubMed ID: 23968074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotational Diffusion of Proteins in Nanochannels.
    Haridasan N; Kannam SK; Mogurampelly S; Sathian SP
    J Phys Chem B; 2019 Jun; 123(23):4825-4832. PubMed ID: 31117604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid.
    Kikugawa G; Ando S; Suzuki J; Naruke Y; Nakano T; Ohara T
    J Chem Phys; 2015 Jan; 142(2):024503. PubMed ID: 25591368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.
    Kordilla J; Pan W; Tartakovsky A
    J Chem Phys; 2014 Dec; 141(22):224112. PubMed ID: 25494737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.