These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23944542)

  • 1. Collective motion of symmetric camphor papers in an annular water channel.
    Ikura YS; Heisler E; Awazu A; Nishimori H; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012911. PubMed ID: 23944542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcation phenomena of two self-propelled camphor disks on an annular field depending on system length.
    Nishi K; Wakai K; Ueda T; Yoshii M; Ikura YS; Nishimori H; Nakata S; Nagayama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022910. PubMed ID: 26382479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.
    Suematsu NJ; Sasaki T; Nakata S; Kitahata H
    Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternate Route Selection of Self-Propelled Filter Papers Impregnated with Camphor for Two-Branched Water Channels.
    Fujita R; Matsufuji T; Matsuo M; Nakata S
    Langmuir; 2021 Jun; 37(23):7039-7042. PubMed ID: 34048652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective behavior of inanimate boats.
    Suematsu NJ; Nakata S; Awazu A; Nishimori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056210. PubMed ID: 20866310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized motion of a mobile boundary driven by a camphor fragment.
    Nakata S; Doi Y; Kitahata H
    J Colloid Interface Sci; 2004 Nov; 279(2):503-8. PubMed ID: 15464817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode switching of a self-propelled camphor disk sensitive to the photoisomerization of a molecular layer on water.
    Nakata S; Miyaji T; Matsuda Y; Yoshii M; Abe M
    Langmuir; 2014 Jul; 30(25):7353-7. PubMed ID: 24901870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-motion of a camphor disk on an aqueous phase depending on the alkyl chain length of sulfate surfactants.
    Nakata S; Murakami M
    Langmuir; 2010 Feb; 26(4):2414-7. PubMed ID: 19877701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocating motion of a self-propelled object on a molecular layer.
    Nakata S; Miyaji T; Sato T; Hoshikawa M; Ikura YS; Izumi S
    Chemphyschem; 2012 Dec; 13(18):4129-33. PubMed ID: 23129191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Propelled Motion of a Camphor Disk on a Photosensitive Amphiphilic Molecular Layer.
    Nakata S; Nasu K; Irie Y; Hatano S
    Langmuir; 2019 Mar; 35(12):4233-4237. PubMed ID: 30807697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous motion of an elliptic camphor particle.
    Kitahata H; Iida K; Nagayama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):010901. PubMed ID: 23410272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment.
    Nakata S; Yoshii M; Matsuda Y; Suematsu NJ
    Chaos; 2015 Jun; 25(6):064610. PubMed ID: 26117135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Perfect Plastic Material for Studies on Self-Propelled Motion on the Water Surface.
    Löffler RJG; Hanczyc MM; Gorecki J
    Molecules; 2021 May; 26(11):. PubMed ID: 34071048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic self-motion of a camphor boat sensitive to ester vapor.
    Nakata S; Matsuo K
    Langmuir; 2005 Feb; 21(3):982-4. PubMed ID: 15667178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronized motion of the water surfaces around two fixed camphor disks.
    Kitahata H; Kawata K; Takahashi S; Nakamura M; Sumino Y; Nakata S
    J Colloid Interface Sci; 2010 Nov; 351(1):299-303. PubMed ID: 20705301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational motion of a camphor disk in a circular region.
    Koyano Y; Suematsu NJ; Kitahata H
    Phys Rev E; 2019 Feb; 99(2-1):022211. PubMed ID: 30934219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced model of a reaction-diffusion system for the collective motion of camphor boats.
    Ikeda K; Ei SI; Nagayama M; Okamoto M; Tomoeda A
    Phys Rev E; 2019 Jun; 99(6-1):062208. PubMed ID: 31330577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of the Rotation Direction for a Camphor Disk Resulting from Chiral Asymmetry of a Water Chamber.
    Nakata S; Yamamoto H; Koyano Y; Yamanaka O; Sumino Y; Suematsu NJ; Kitahata H; Skrobanska P; Gorecki J
    J Phys Chem B; 2016 Sep; 120(34):9166-72. PubMed ID: 27500909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swarming of self-propelled camphor boats.
    Heisler E; Suematsu NJ; Awazu A; Nishimori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):055201. PubMed ID: 23004811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.