These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 23944561)
1. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations. Obliger A; Duvail M; Jardat M; Coelho D; Békri S; Rotenberg B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013019. PubMed ID: 23944561 [TBL] [Abstract][Full Text] [Related]
2. Pore network model of electrokinetic transport through charged porous media. Obliger A; Jardat M; Coelho D; Bekri S; Rotenberg B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043013. PubMed ID: 24827338 [TBL] [Abstract][Full Text] [Related]
3. Accounting for adsorption and desorption in lattice Boltzmann simulations. Levesque M; Duvail M; Pagonabarraga I; Frenkel D; Rotenberg B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013308. PubMed ID: 23944584 [TBL] [Abstract][Full Text] [Related]
5. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method. Wang M; Wang J; Chen S; Pan N J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843 [TBL] [Abstract][Full Text] [Related]
6. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. Deng M; Li Z; Borodin O; Karniadakis GE J Chem Phys; 2016 Oct; 145(14):144109. PubMed ID: 27782504 [TBL] [Abstract][Full Text] [Related]
7. Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids. Horbach J; Frenkel D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061507. PubMed ID: 11736191 [TBL] [Abstract][Full Text] [Related]
8. Modeling electrokinetics in ionic liquids. Wang C; Bao J; Pan W; Sun X Electrophoresis; 2017 Jul; 38(13-14):1693-1705. PubMed ID: 28314048 [TBL] [Abstract][Full Text] [Related]
9. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres. Hlushkou D; Seidel-Morgenstern A; Tallarek U Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866 [TBL] [Abstract][Full Text] [Related]
10. Lattice Boltzmann electrokinetics simulation of nanocapacitors. Asta AJ; Palaia I; Trizac E; Levesque M; Rotenberg B J Chem Phys; 2019 Sep; 151(11):114104. PubMed ID: 31542016 [TBL] [Abstract][Full Text] [Related]
11. Multiscale Model for Electrokinetic Transport in Networks of Pores, Part I: Model Derivation. Alizadeh S; Mani A Langmuir; 2017 Jun; 33(25):6205-6219. PubMed ID: 28498669 [TBL] [Abstract][Full Text] [Related]
12. Effects of charge on osmotic reflection coefficients of macromolecules in porous membranes. Bhalla G; Deen WM J Colloid Interface Sci; 2009 May; 333(1):363-72. PubMed ID: 19211110 [TBL] [Abstract][Full Text] [Related]
14. Lattice-Boltzmann Simulations of Ionic Current Modulation by DNA Translocation. Reboux S; Capuani F; Frenkel D J Chem Theory Comput; 2006 May; 2(3):495-503. PubMed ID: 26626660 [TBL] [Abstract][Full Text] [Related]
15. Moving charged particles in lattice Boltzmann-based electrokinetics. Kuron M; Rempfer G; Schornbaum F; Bauer M; Godenschwager C; Holm C; de Graaf J J Chem Phys; 2016 Dec; 145(21):214102. PubMed ID: 28799336 [TBL] [Abstract][Full Text] [Related]
16. Theoretical and numerical study of axisymmetric lattice Boltzmann models. Huang H; Lu XY Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832 [TBL] [Abstract][Full Text] [Related]
17. Discrete solution of the electrokinetic equations. Capuani F; Pagonabarraga I; Frenkel D J Chem Phys; 2004 Jul; 121(2):973-86. PubMed ID: 15260630 [TBL] [Abstract][Full Text] [Related]
18. Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study. Smiatek J; Sega M; Holm C; Schiller UD; Schmid F J Chem Phys; 2009 Jun; 130(24):244702. PubMed ID: 19566169 [TBL] [Abstract][Full Text] [Related]
19. Where the linearized Poisson-Boltzmann cell model fails: the planar case as a prototype study. Tamashiro MN; Schiessel H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066106. PubMed ID: 14754268 [TBL] [Abstract][Full Text] [Related]
20. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Guo Z; Zheng C; Shi B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036707. PubMed ID: 18517557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]