These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23944581)

  • 1. Self-organization and solution of shortest-path optimization problems with memristive networks.
    Pershin YV; Di Ventra M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013305. PubMed ID: 23944581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the physical properties of memristive, memcapacitive and meminductive systems.
    Di Ventra M; Pershin YV
    Nanotechnology; 2013 Jun; 24(25):255201. PubMed ID: 23708238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Approach Based on Collective Intelligence to Solve Traveling Salesman Problems.
    Kiran MS; Beskirli M
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitations of neural networks for solving traveling salesman problems.
    Gee AH; Prager RW
    IEEE Trans Neural Netw; 1995; 6(1):280-2. PubMed ID: 18263311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved bio-inspired algorithm for the directed shortest path problem.
    Zhang X; Zhang Y; Deng Y
    Bioinspir Biomim; 2014 Nov; 9(4):046016. PubMed ID: 25405318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast marching methods for the continuous traveling salesman problem.
    Andrews J; Sethian JA
    Proc Natl Acad Sci U S A; 2007 Jan; 104(4):1118-23. PubMed ID: 17220271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving mazes with memristors: a massively parallel approach.
    Pershin YV; Di Ventra M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046703. PubMed ID: 22181303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving a four-destination traveling salesman problem using Escherichia coli cells as biocomputers.
    Esau M; Rozema M; Zhang TH; Zeng D; Chiu S; Kwan R; Moorhouse C; Murray C; Tseng NT; Ridgway D; Sauvageau D; Ellison M
    ACS Synth Biol; 2014 Dec; 3(12):972-5. PubMed ID: 25524102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Kohonen-like decomposition method for the Euclidean traveling salesman problem-KNIES/spl I.bar/DECOMPOSE.
    Aras N; Altinel IK; Oommen J
    IEEE Trans Neural Netw; 2003; 14(4):869-90. PubMed ID: 18238067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport optimization on complex networks.
    Danila B; Yu Y; Marsh JA; Bassler KE
    Chaos; 2007 Jun; 17(2):026102. PubMed ID: 17614689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified constructive network model for problem-solving.
    Takahashi Y
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(4):606-15. PubMed ID: 18263058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bio-inspired method for the constrained shortest path problem.
    Wang H; Lu X; Zhang X; Wang Q; Deng Y
    ScientificWorldJournal; 2014; 2014():271280. PubMed ID: 24959603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks.
    Mulder SA; Wunsch DC
    Neural Netw; 2003; 16(5-6):827-32. PubMed ID: 12850040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient convex-elastic net algorithm to solve the Euclidean traveling salesman problem.
    Al-Mulhem M; Al-Maghrabi T
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(4):618-20. PubMed ID: 18255981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.
    Qu H; Yi Z; Yang SX
    IEEE Trans Cybern; 2013 Jun; 43(3):995-1010. PubMed ID: 23144039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shortest path counting in probabilistic biological networks.
    Ren Y; Ay A; Kahveci T
    BMC Bioinformatics; 2018 Dec; 19(1):465. PubMed ID: 30514202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact solution of large asymmetric traveling salesman problems.
    Miller DL; Pekny JF
    Science; 1991 Feb; 251(4995):754-61. PubMed ID: 17775454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The generalized quadratic knapsack problem. A neuronal network approach.
    Talaván PM; Yáñez J
    Neural Netw; 2006 May; 19(4):416-28. PubMed ID: 16488117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conducting-insulating transition in adiabatic memristive networks.
    Sheldon FC; Di Ventra M
    Phys Rev E; 2017 Jan; 95(1-1):012305. PubMed ID: 28208448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the runtime of an evolutionary algorithm for the multi-objective shortest path problem.
    Horoba C
    Evol Comput; 2010; 18(3):357-81. PubMed ID: 20560760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.