These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 23944584)

  • 21. Rectangular lattice Boltzmann method.
    Zhou JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026705. PubMed ID: 20365673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations.
    Hajabdollahi F; Premnath KN
    Phys Rev E; 2018 May; 97(5-1):053303. PubMed ID: 29906868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase-field-based lattice Boltzmann model for simulating thermocapillary flows.
    Wang L; He K; Wang H
    Phys Rev E; 2023 Nov; 108(5-2):055306. PubMed ID: 38115446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow.
    Guo Z; Zheng C; Shi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036707. PubMed ID: 18517557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number.
    Meng X; Guo Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043305. PubMed ID: 26565362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.
    Li Q; He YL; Wang Y; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056705. PubMed ID: 18233788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids.
    Furtado K; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066124. PubMed ID: 16906931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axisymmetric lattice Boltzmann method revised.
    Zhou JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036704. PubMed ID: 22060526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport.
    Perko J; Patel RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053309. PubMed ID: 25353916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unexpected coupling between flow and adsorption in porous media.
    Vanson JM; Coudert FX; Rotenberg B; Levesque M; Tardivat C; Klotz M; Boutin A
    Soft Matter; 2015 Aug; 11(30):6125-33. PubMed ID: 26139013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A lattice kinetic scheme for incompressible viscous flows with heat transfer.
    Inamuro T
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):477-84. PubMed ID: 16210191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Moving charged particles in lattice Boltzmann-based electrokinetics.
    Kuron M; Rempfer G; Schornbaum F; Bauer M; Godenschwager C; Holm C; de Graaf J
    J Chem Phys; 2016 Dec; 145(21):214102. PubMed ID: 28799336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarse-grained simulations of charge, current and flow in heterogeneous media.
    Rotenberg B; Pagonabarraga I; Frenkel D
    Faraday Discuss; 2010; 144():223-43; discussion 323-45, 467-81. PubMed ID: 20158031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multireflection boundary conditions for lattice Boltzmann models.
    Ginzburg I; d'Humières D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066614. PubMed ID: 14754343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale Lattice Boltzmann Simulation of the Kinetics Process of Methane Desorption-Diffusion in Coal.
    Peng Z; Deng Z; Feng H; Liu S; Li Y
    ACS Omega; 2021 Aug; 6(30):19789-19798. PubMed ID: 34368566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple-distribution-function lattice Boltzmann method for convection-diffusion-system-based incompressible Navier-Stokes equations.
    Chai Z; Shi B; Zhan C
    Phys Rev E; 2022 Nov; 106(5-2):055305. PubMed ID: 36559463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.