These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2394460)

  • 1. High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link.
    Zierhofer CM; Hochmair ES
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):716-22. PubMed ID: 2394460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distant energy transfer for artificial human implants.
    Theodoridis MP; Mollov SV
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1931-8. PubMed ID: 16285397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-loop class E transcutaneous power and data link for microimplants.
    Troyk PR; Schwan MA
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):589-99. PubMed ID: 1601440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-oscillating detuning-insensitive class-E transmitter for implantable microsystems.
    Ziaie B; Rose SC; Nardin MD; Najafi K
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):397-400. PubMed ID: 11327509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of dual band power and data telemetry for biomedical implants.
    Guoxing Wang ; Peijun Wang ; Yina Tang ; Wentai Liu
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):208-15. PubMed ID: 23853143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum achievable efficiency in near-field coupled power-transfer systems.
    Zargham M; Gulak PG
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):228-45. PubMed ID: 23853145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power transmission for gastrointestinal microsystems using inductive coupling.
    Guanying M; Guozheng Y; Xiu H
    Physiol Meas; 2007 Mar; 28(3):N9-18. PubMed ID: 17322587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcutaneous transmission of digital data and energy in a cochlear prosthesis system.
    Zierhofer MC; Hochmair ES
    Int J Artif Organs; 1992 Jun; 15(6):379-82. PubMed ID: 1639532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel power amplification scheme for nuclear magnetic resonance/nuclear quadrupole resonance systems.
    Zhang X; Schemm N; Balkır S
    Rev Sci Instrum; 2011 Mar; 82(3):034707. PubMed ID: 21456776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.
    Burdt R; Curry RD
    Rev Sci Instrum; 2007 Jul; 78(7):074703. PubMed ID: 17672783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RF powering of millimeter- and submillimeter-sized neural prosthetic implants.
    Heetderks WJ
    IEEE Trans Biomed Eng; 1988 May; 35(5):323-7. PubMed ID: 3397079
    [No Abstract]   [Full Text] [Related]  

  • 16. [Research on wireless power transmission for gastrointestinal microsystems based on inductive coupling].
    Ma G; Yan G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):61-4, 87. PubMed ID: 18435258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple RF matching circuit for conversion of electrosurgical units or laboratory amplifiers to hyperthermia treatment devices.
    Stauffer PR
    Med Instrum; 1984; 18(6):326-8. PubMed ID: 6521678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual-mode highly efficient class-E stimulator controlled by a low-Q class-E power amplifier through duty cycle.
    Chiu HW; Lu CC; Chuang JM; Lin WT; Lin CW; Kao MC; Lin ML
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):243-55. PubMed ID: 23853324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An implantable RF-powered dual channel stimulator.
    Poon CW; Ko WH; Peckham PH; McNeal DR; Su N
    Biotelem Patient Monit; 1981; 8(3):180-8. PubMed ID: 7295933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicoils-based inductive links dedicated to power up implantable medical devices: modeling, design and experimental results.
    Sawan M; Hashemi S; Sehil M; Awwad F; Hajj-Hassan M; Khouas A
    Biomed Microdevices; 2009 Oct; 11(5):1059-70. PubMed ID: 19488859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.