These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2394463)

  • 1. A method for real-time processing to study recovery functions of evoked potentials.
    Nakamura M; Shibasaki H; Nishida S; Neshige R
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):738-40. PubMed ID: 2394463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear alignment and averaging for estimating the evoked potential.
    Gupta L; Molfese DL; Tammana R; Simos PG
    IEEE Trans Biomed Eng; 1996 Apr; 43(4):348-56. PubMed ID: 8626184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted averaging of evoked potentials.
    Davila CE; Mobin MS
    IEEE Trans Biomed Eng; 1992 Apr; 39(4):338-45. PubMed ID: 1592399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetosensory evoked potentials: consistent nonlinear phenomena.
    Carrubba S; Frilot C; Chesson AL; Webber CL; Zbilut JP; Marino AA
    Neurosci Res; 2008 Jan; 60(1):95-105. PubMed ID: 18036693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. xDAWN algorithm to enhance evoked potentials: application to brain-computer interface.
    Rivet B; Souloumiac A; Attina V; Gibert G
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2035-43. PubMed ID: 19174332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the signal-to-noise ratio for average evoked potentials: determination of interstimulus interval and averaging number.
    Nakamura M; Nishida S; Shibasaki H
    Front Med Biol Eng; 1989; 1(4):341-9. PubMed ID: 2486921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust parametric estimator for single-trial movement related brain potentials.
    Lange DH; Inbar GF
    IEEE Trans Biomed Eng; 1996 Apr; 43(4):341-7. PubMed ID: 8626183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time filtering for the estimation of steady-state visual evoked brain potentials.
    Collura TF
    IEEE Trans Biomed Eng; 1990 Jun; 37(6):650-2. PubMed ID: 2354847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fuzzy clustering approach to EP estimation.
    Zouridakis G; Jansen BH; Boutros NN
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):673-80. PubMed ID: 9254981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous characterization of time-varying nonlinear systems.
    Krieger D; Berger TW; Sclabassi RJ
    IEEE Trans Biomed Eng; 1992 Apr; 39(4):420-4. PubMed ID: 1592408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An analysis of evoked brain activity by computing the average duration of the wave half-period].
    Novototskiĭ-Vlasov VIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(4):819-27. PubMed ID: 8540268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing.
    Birn RM; Cox RW; Bandettini PA
    Neuroimage; 2002 Jan; 15(1):252-64. PubMed ID: 11771993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans.
    Iannetti GD; Niazy RK; Wise RG; Jezzard P; Brooks JC; Zambreanu L; Vennart W; Matthews PM; Tracey I
    Neuroimage; 2005 Nov; 28(3):708-19. PubMed ID: 16112589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery functions of short and long latency reflexes in hand muscles evoked by paired stimulation of peripheral nerves.
    Podivinský F; Jergelová M; Koncek V
    Electromyogr Clin Neurophysiol; 1993; 33(7):427-31. PubMed ID: 8261983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmented matched filtering of single event related evoked potentials.
    Lange DH; Pratt H; Inbar GF
    IEEE Trans Biomed Eng; 1995 Mar; 42(3):317-21. PubMed ID: 7698788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurogenic vestibular evoked potentials using a tone pip auditory stimulus.
    Papathanasiou ES; Zamba-Papanicolaou E; Pantziaris M; Kleopas K; Kyriakides T; Papacostas S; Pattichis C; Iliopoulos I; Piperidou C
    Electromyogr Clin Neurophysiol; 2004; 44(3):167-73. PubMed ID: 15125057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials.
    Qiu W; Chang C; Liu W; Poon PW; Hu Y; Lam FK; Hamernik RP; Wei G; Chan FH
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):226-37. PubMed ID: 16485751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The disposing techniques of evoked potentials].
    Liu HG; Zhou L; Gu J; Jing DZ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2000 Nov; 24(6):314-7, 320. PubMed ID: 12583248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow potentials are important in neonatal EEG.
    Puumala P; Sonkajärvi E; Karvonen E; Tuukkanen J; Jäntti VH
    Clin Neurophysiol; 2006 Apr; 117(4):928-9; author reply 929-30. PubMed ID: 16495150
    [No Abstract]   [Full Text] [Related]  

  • 20. Independent component analysis and clustering improve signal-to-noise ratio for statistical analysis of event-related potentials.
    Zeman PM; Till BC; Livingston NJ; Tanaka JW; Driessen PF
    Clin Neurophysiol; 2007 Dec; 118(12):2591-604. PubMed ID: 17967560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.