These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23944736)

  • 1. Creation of cross-linked bilayer membranes that can incorporate membrane proteins from oligo-Asp-based peptide gemini surfactants.
    Koeda S; Umezaki K; Sumino A; Noji T; Ikeda A; Yamamoto Y; Dewa T; Taga K; Nango M; Tanaka T; Mizuno T
    Langmuir; 2013 Sep; 29(37):11695-704. PubMed ID: 23944736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective assembly of photosynthetic antenna proteins into a domain-structured lipid bilayer for the construction of artificial photosynthetic antenna systems: structural analysis of the assembly using surface plasmon resonance and atomic force microscopy.
    Sumino A; Dewa T; Kondo M; Morii T; Hashimoto H; Gardiner AT; Cogdell RJ; Nango M
    Langmuir; 2011 Feb; 27(3):1092-9. PubMed ID: 21204531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and structural analysis of tethered lipid bilayer containing photosynthetic antenna proteins for functional analysis.
    Sumino A; Dewa T; Takeuchi T; Sugiura R; Sasaki N; Misawa N; Tero R; Urisu T; Gardiner AT; Cogdell RJ; Hashimoto H; Nango M
    Biomacromolecules; 2011 Jul; 12(7):2850-8. PubMed ID: 21650465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy studies of native photosynthetic membranes.
    Sturgis JN; Tucker JD; Olsen JD; Hunter CN; Niederman RA
    Biochemistry; 2009 May; 48(17):3679-98. PubMed ID: 19265434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.
    Koeda S; Umezaki K; Noji T; Ikeda A; Kawakami K; Kondo M; Yamamoto Y; Shen JR; Taga K; Dewa T; Ito S; Nango M; Tanaka T; Mizuno T
    Langmuir; 2013 Sep; 29(37):11667-80. PubMed ID: 23957575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of bacterial photosynthetic unit in a lipid bilayer studied by single-molecule spectroscopy at 5 K.
    Uchiyama D; Oikawa H; Otomo K; Nango M; Dewa T; Fujiyoshi S; Matsushita M
    Phys Chem Chem Phys; 2011 Jun; 13(24):11615-9. PubMed ID: 21597611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2 investigated by high resolution AFM.
    Gonçalves RP; Busselez J; Lévy D; Seguin J; Scheuring S
    J Struct Biol; 2005 Jan; 149(1):79-86. PubMed ID: 15629659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy.
    Stamouli A; Kafi S; Klein DC; Oosterkamp TH; Frenken JW; Cogdell RJ; Aartsma TJ
    Biophys J; 2003 Apr; 84(4):2483-91. PubMed ID: 12668456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of phospholipid composition on self-assembly and energy-transfer efficiency in networks of light-harvesting 2 complexes.
    Sumino A; Dewa T; Noji T; Nakano Y; Watanabe N; Hildner R; Bösch N; Köhler J; Nango M
    J Phys Chem B; 2013 Sep; 117(36):10395-404. PubMed ID: 23919556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral organization of a membrane protein in a supported binary lipid domain: direct observation of the organization of bacterial light-harvesting complex 2 by total internal reflection fluorescence microscopy.
    Dewa T; Sugiura R; Suemori Y; Sugimoto M; Takeuchi T; Hiro A; Iida K; Gardiner AT; Cogdell RJ; Nango M
    Langmuir; 2006 Jun; 22(12):5412-8. PubMed ID: 16732671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial dynamic adsorption and structure of molecular layers of peptide surfactants.
    Pan F; Zhao X; Perumal S; Waigh TA; Lu JR; Webster JR
    Langmuir; 2010 Apr; 26(8):5690-6. PubMed ID: 19928974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. II. Homo-arrays of LH2 complexes reconstituted into phospholipid model membranes.
    Pflock TJ; Oellerich S; Krapf L; Southall J; Cogdell RJ; Ullmann GM; Köhler J
    J Phys Chem B; 2011 Jul; 115(28):8821-31. PubMed ID: 21650216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing the solubilization of supported lipid bilayers by an amphiphilic peptide.
    Rigby-Singleton SM; Davies MC; Harris H; O'Shea P; Allen S
    Langmuir; 2006 Jul; 22(14):6273-9. PubMed ID: 16800686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linker chemistry determines secondary structure of p5314-29 in peptide amphiphile micelles.
    Missirlis D; Farine M; Kastantin M; Ananthanarayanan B; Neumann T; Tirrell M
    Bioconjug Chem; 2010 Mar; 21(3):465-75. PubMed ID: 20166676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer vesicles of amphiphilic cyclodextrins: host membranes that recognize guest molecules.
    Falvey P; Lim CW; Darcy R; Revermann T; Karst U; Giesbers M; Marcelis AT; Lazar A; Coleman AW; Reinhoudt DN; Ravoo BJ
    Chemistry; 2005 Feb; 11(4):1171-80. PubMed ID: 15619722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.
    Brizard A; Dolain C; Huc I; Oda R
    Langmuir; 2006 Apr; 22(8):3591-600. PubMed ID: 16584231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components.
    Todd JB; Parkes-Loach PS; Leykam JF; Loach PA
    Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning.
    Caputo GA; London E
    Biochemistry; 2004 Jul; 43(27):8794-806. PubMed ID: 15236588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.