These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23944904)

  • 1. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.
    Wang Z; Gu M; Zhou Y; Zu X; Connell JG; Xiao J; Perea D; Lauhon LJ; Bang J; Zhang S; Wang C; Gao F
    Nano Lett; 2013 Sep; 13(9):4511-6. PubMed ID: 23944904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
    McDowell MT; Lee SW; Nix WD; Cui Y
    Adv Mater; 2013 Sep; 25(36):4966-85. PubMed ID: 24038172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ atomic-scale imaging of electrochemical lithiation in silicon.
    Liu XH; Wang JW; Huang S; Fan F; Huang X; Liu Y; Krylyuk S; Yoo J; Dayeh SA; Davydov AV; Mao SX; Picraux ST; Zhang S; Li J; Zhu T; Huang JY
    Nat Nanotechnol; 2012 Nov; 7(11):749-56. PubMed ID: 23042490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4.
    Gu M; Wang Z; Connell JG; Perea DE; Lauhon LJ; Gao F; Wang C
    ACS Nano; 2013 Jul; 7(7):6303-9. PubMed ID: 23795599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
    Pharr M; Zhao K; Wang X; Suo Z; Vlassak JJ
    Nano Lett; 2012 Sep; 12(9):5039-47. PubMed ID: 22889293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory study of defective silicenes as anode materials for lithium ion batteries.
    Momeni MJ; Chowdhury C; Mousavi-Khoshdel M
    J Mol Graph Model; 2017 Nov; 78():206-212. PubMed ID: 29100165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast electrochemical lithiation of individual Si nanowire anodes.
    Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY
    Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.
    Zhao K; Wang WL; Gregoire J; Pharr M; Suo Z; Vlassak JJ; Kaxiras E
    Nano Lett; 2011 Jul; 11(7):2962-7. PubMed ID: 21692465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries.
    Raić M; Mikac L; Marić I; Štefanić G; Škrabić M; Gotić M; Ivanda M
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale.
    Liu Y; Liu XH; Nguyen BM; Yoo J; Sullivan JP; Picraux ST; Huang JY; Dayeh SA
    Nano Lett; 2013 Oct; 13(10):4876-83. PubMed ID: 24000810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li segregation induces structure and strength changes at the amorphous Si/Cu interface.
    Stournara ME; Xiao X; Qi Y; Johari P; Lu P; Sheldon BW; Gao H; Shenoy VB
    Nano Lett; 2013 Oct; 13(10):4759-68. PubMed ID: 24000887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction mechanisms of ethylene carbonate on si anodes of lithium-ion batteries: effects of degree of lithiation and nature of exposed surface.
    Martinez de la Hoz JM; Leung K; Balbuena PB
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13457-65. PubMed ID: 24224826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation.
    Kushima A; Liu XH; Zhu G; Wang ZL; Huang JY; Li J
    Nano Lett; 2011 Nov; 11(11):4535-41. PubMed ID: 21942500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructures and electrochemical properties of Si-xTiNi alloys for lithium secondary batteries.
    Kwon HJ; Song JJ; Ahn DK; Hong SH; Cho JS; Moon JT; Sohn KY; Park WW
    J Nanosci Nanotechnol; 2013 May; 13(5):3417-21. PubMed ID: 23858870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.
    Cui LF; Ruffo R; Chan CK; Peng H; Cui Y
    Nano Lett; 2009 Jan; 9(1):491-5. PubMed ID: 19105648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.