These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23945352)

  • 1. An ab initio study of oxygen on strained graphene.
    Nguyen MT
    J Phys Condens Matter; 2013 Oct; 25(39):395301. PubMed ID: 23945352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain effect on the adsorption, diffusion, and molecular dissociation of hydrogen on Mg (0001) surface.
    Lei H; Wang C; Yao Y; Wang Y; Hupalo M; McDougall D; Tringides M; Ho K
    J Chem Phys; 2013 Dec; 139(22):224702. PubMed ID: 24329077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic AC conductivity of strained graphene.
    Oliva-Leyva M; Naumis GG
    J Phys Condens Matter; 2014 Mar; 26(12):125302. PubMed ID: 24599054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent functionalization of strained graphene.
    Boukhvalov DW; Son YW
    Chemphyschem; 2012 Apr; 13(6):1463-9. PubMed ID: 22416041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of anomalous strain effects on the molecular adsorption on boron-doped graphene.
    Kang J; Kim YH; Glatzmaier GC; Wei SH
    J Chem Phys; 2013 Jul; 139(4):044709. PubMed ID: 23902005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional extended lines of divacancy defects in graphene.
    Botello-Méndez AR; Declerck X; Terrones M; Terrones H; Charlier JC
    Nanoscale; 2011 Jul; 3(7):2868-72. PubMed ID: 21321755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li diffusion through doped and defected graphene.
    Das D; Kim S; Lee KR; Singh AK
    Phys Chem Chem Phys; 2013 Sep; 15(36):15128-34. PubMed ID: 23925460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation.
    Wang Y; Qian HJ; Morokuma K; Irle S
    J Phys Chem A; 2012 Jul; 116(26):7154-60. PubMed ID: 22646976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing electronic structure and quantum transport at the graphene-Si(111) interface: an ab initio density-functional study.
    Tayran C; Zhu Z; Baldoni M; Selli D; Seifert G; Tománek D
    Phys Rev Lett; 2013 Apr; 110(17):176805. PubMed ID: 23679758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicene beyond mono-layers--different stacking configurations and their properties.
    Kamal C; Chakrabarti A; Banerjee A; Deb SK
    J Phys Condens Matter; 2013 Feb; 25(8):085508. PubMed ID: 23370369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction.
    Wu P; Du P; Zhang H; Cai C
    Phys Chem Chem Phys; 2013 May; 15(18):6920-8. PubMed ID: 23549636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-induced enhancement of the chemical reactivity in metal-supported graphene.
    Romero-Muñiz C; Martín-Recio A; Pou P; Gómez-Rodríguez JM; Pérez R
    Phys Chem Chem Phys; 2018 Jul; 20(29):19492-19499. PubMed ID: 29998270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating optical properties of graphene oxide: role of prominent functional groups.
    Johari P; Shenoy VB
    ACS Nano; 2011 Sep; 5(9):7640-7. PubMed ID: 21875075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene allotropes under extreme uniaxial strain: an ab initio theoretical study.
    Fthenakis ZG; Lathiotakis NN
    Phys Chem Chem Phys; 2015 Jul; 17(25):16418-27. PubMed ID: 26051043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved gas sensing activity in structurally defected bilayer graphene.
    Hajati Y; Blom T; Jafri SH; Haldar S; Bhandary S; Shoushtari MZ; Eriksson O; Sanyal B; Leifer K
    Nanotechnology; 2012 Dec; 23(50):505501. PubMed ID: 23183126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio characterization and experimental validation on the roles of oxygen-containing groups in graphene based formaldehyde sensors.
    Duan L; Bo Z; Chen X; Qi H; Yan J; Cen K
    Analyst; 2017 Dec; 143(1):106-115. PubMed ID: 28952619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.