BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23945420)

  • 1. Optimized intelligent control of a 2-degree of freedom robot for rehabilitation of lower limbs using neural network and genetic algorithm.
    Aminiazar W; Najafi F; Nekoui MA
    J Neuroeng Rehabil; 2013 Aug; 10():96. PubMed ID: 23945420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision-Based Intelligent Perceiving and Planning System of a 7-DoF Collaborative Robot.
    Xu L; Li G; Song P; Shao W
    Comput Intell Neurosci; 2021; 2021():5810371. PubMed ID: 34630547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art.
    Carpino G; Pezzola A; Urbano M; Guglielmelli E
    J Healthc Eng; 2018; 2018():7492024. PubMed ID: 29973978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of manipulability optimization control of a 7-DoF serial manipulator for robot-assisted surgery.
    Su H; Danioni A; Mira RM; Ungari M; Zhou X; Li J; Hu Y; Ferrigno G; De Momi E
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 33113264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Neural Network Based Approach to Inverse Kinematics Problem for General Six-Axis Robots.
    Lu J; Zou T; Jiang X
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Theory and a Performance Analysis of an Innovative Rehabilitation Robot.
    Wu J; Liu Y; Zhao J; Zang X; Guan Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable neurovisual servoing for robot manipulators.
    Loreto G; Garrido R
    IEEE Trans Neural Netw; 2006 Jul; 17(4):953-965. PubMed ID: 16856658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trajectory Deformation-Based Multi-Modal Adaptive Compliance Control for a Wearable Lower Limb Rehabilitation Robot.
    Zhou J; Peng H; Zheng M; Wei Z; Fan T; Song R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():314-324. PubMed ID: 38165796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Design Scheme for Intelligent Upper Limb Rehabilitation Training Robot.
    Zhao Y; Liang C; Gu Z; Zheng Y; Wu Q
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32344651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal Compliance Control for a Wearable Lower Limb Rehabilitation Robot.
    Zhou J; Peng H; Su S; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1858-1868. PubMed ID: 37015454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.