BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2394570)

  • 1. Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 2. Practical aspects.
    van Kuijk C; Grashuis JL; Steenbeek JC; Schütte HE; Trouerbach WT
    Invest Radiol; 1990 Aug; 25(8):882-9. PubMed ID: 2394570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 1. Theoretical considerations.
    van Kuijk C; Grashuis JL; Steenbeek JC; Schütte HE; Trouerbach WT
    Invest Radiol; 1990 Aug; 25(8):876-81. PubMed ID: 2394569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of calibration materials in single- and dual-energy quantitative CT.
    Steenbeek JC; van Kuijk C; Grashuis JL
    Radiology; 1992 Jun; 183(3):849-55. PubMed ID: 1584946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new set of calibration standards for estimating the fat and mineral content of vertebrae via dual energy QCT.
    Goodsitt MM; Johnson RH; Chesnut CH
    Bone Miner; 1991 Jun; 13(3):217-33. PubMed ID: 1863810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of fat-equivalent materials in postprocessing dual-energy quantitative CT.
    Steenbeek JC; van Kuijk C; Grashuis JL; van Panthaleon van Eck RB
    Med Phys; 1992; 19(4):1051-6. PubMed ID: 1518467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of bone mineral density with dual energy quantitative computed tomography (DEQCT)].
    Ito M; Hayashi K; Yamada N
    Nihon Igaku Hoshasen Gakkai Zasshi; 1989 Aug; 49(8):999-1008. PubMed ID: 2594490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative computed tomography scanning for measurement of bone and bone marrow fat content. A comparison of single- and dual-energy techniques using a solid synthetic phantom.
    Goodsitt MM; Rosenthal DI
    Invest Radiol; 1987 Oct; 22(10):799-810. PubMed ID: 3429176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density.
    Nazarian A; Snyder BD; Zurakowski D; Müller R
    Bone; 2008 Aug; 43(2):302-311. PubMed ID: 18539557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebral bone mineral analysis: an integrated approach with CT.
    Kalender WA; Klotz E; Suess C
    Radiology; 1987 Aug; 164(2):419-23. PubMed ID: 3602380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A postprocessing dual energy technique for vertebral CT densitometry.
    Laval-Jeantet AM; Cann CE; Roger B; Dallant P
    J Comput Assist Tomogr; 1984 Dec; 8(6):1164-7. PubMed ID: 6501625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo analysis of single, pre- and postprocessing quantitative CT techniques.
    Reinus WR; Hardy DC
    Invest Radiol; 1988 Jan; 23(1):42-6. PubMed ID: 3338898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of dual-energy x-ray absorptiometry for bone density.
    Mazess RB; Trempe JA; Bisek JP; Hanson JA; Hans D
    J Bone Miner Res; 1991 Aug; 6(8):799-806. PubMed ID: 1785372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography.
    Reinbold WD; Adler CP; Kalender WA; Lente R
    Skeletal Radiol; 1991; 20(1):25-9. PubMed ID: 2000501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of temperature on QCT: implications for mineral densitometry.
    Whitehouse RW; Economou G; Adams JE
    J Comput Assist Tomogr; 1993; 17(6):945-51. PubMed ID: 8227582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of collagen on bone mineral analysis with CT.
    Goodsitt MM; Kilcoyne RF; Gutcheck RA; Richardson ML; Rosenthal DI
    Radiology; 1988 Jun; 167(3):787-91. PubMed ID: 3363141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content.
    Vetter JR; Perman WH; Kalender WA; Mazess RB; Holden JE
    Med Phys; 1986; 13(3):340-3. PubMed ID: 3724694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative computed tomography: comparative study using different scanners with two calibration phantoms.
    Suzuki S; Yamamuro T; Okumura H; Yamamoto I
    Br J Radiol; 1991 Nov; 64(767):1001-6. PubMed ID: 1742578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion range estimation by using dual energy computed tomography.
    Hünemohr N; Krauss B; Dinkel J; Gillmann C; Ackermann B; Jäkel O; Greilich S
    Z Med Phys; 2013 Dec; 23(4):300-13. PubMed ID: 23597413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The composition of bone marrow for a dual-energy quantitative computed tomography technique. A cadaver and computer simulation study.
    Goodsitt MM; Hoover P; Veldee MS; Hsueh SL
    Invest Radiol; 1994 Jul; 29(7):695-704. PubMed ID: 7960616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution computed tomography of the vertebrae yields accurate information on trabecular distances if processed by 3D fuzzy segmentation approaches.
    Krebs A; Graeff C; Frieling I; Kurz B; Timm W; Engelke K; Glüer CC
    Bone; 2009 Jan; 44(1):145-52. PubMed ID: 18955170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.