BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23946236)

  • 1. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: highly efficient synthesis of formamides.
    Tanaka S; Minato T; Ito E; Hara M; Kim Y; Yamamoto Y; Asao N
    Chemistry; 2013 Sep; 19(36):11832-6. PubMed ID: 23946236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupported Nanoporous Gold Catalyst for Chemoselective Hydrogenation Reactions under Low Pressure: Effect of Residual Silver on the Reaction.
    Takale BS; Feng X; Lu Y; Bao M; Jin T; Minato T; Yamamoto Y
    J Am Chem Soc; 2016 Aug; 138(32):10356-64. PubMed ID: 27430955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives.
    Yan M; Jin T; Ishikawa Y; Minato T; Fujita T; Chen LY; Bao M; Asao N; Chen MW; Yamamoto Y
    J Am Chem Soc; 2012 Oct; 134(42):17536-42. PubMed ID: 23020313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts.
    Asao N; Hatakeyama N; Menggenbateer ; Minato T; Ito E; Hara M; Kim Y; Yamamoto Y; Chen M; Zhang W; Inoue A
    Chem Commun (Camb); 2012 May; 48(38):4540-2. PubMed ID: 22310729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient heterogeneous aerobic cross-dehydrogenative coupling via C-H functionalization of tertiary amines using a nanoporous gold skeleton catalyst.
    Ho HE; Ishikawa Y; Asao N; Yamamoto Y; Jin T
    Chem Commun (Camb); 2015 Aug; 51(64):12764-7. PubMed ID: 26165690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-formylation of amines via the aerobic oxidation of methanol over supported gold nanoparticles.
    Ishida T; Haruta M
    ChemSusChem; 2009; 2(6):538-41. PubMed ID: 19437478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface.
    Xu B; Siler CG; Madix RJ; Friend CM
    Chemistry; 2014 Apr; 20(16):4646-52. PubMed ID: 24633724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature.
    Wittstock A; Zielasek V; Biener J; Friend CM; Bäumer M
    Science; 2010 Jan; 327(5963):319-22. PubMed ID: 20075249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones.
    Chen Q; Tanaka S; Fujita T; Chen L; Minato T; Ishikawa Y; Chen M; Asao N; Yamamoto Y; Jin T
    Chem Commun (Camb); 2014 Mar; 50(25):3344-6. PubMed ID: 24535201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts.
    Kegnæs S; Mielby J; Mentzel UV; Jensen T; Fristrup P; Riisager A
    Chem Commun (Camb); 2012 Feb; 48(18):2427-9. PubMed ID: 22274843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocatalytic methanol oxidation with nanoporous gold: microstructure and selectivity.
    Graf M; Haensch M; Carstens J; Wittstock G; Weissmüller J
    Nanoscale; 2017 Nov; 9(45):17839-17848. PubMed ID: 29116276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.
    Baker TA; Liu X; Friend CM
    Phys Chem Chem Phys; 2011 Jan; 13(1):34-46. PubMed ID: 21103516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupported nanoporous gold catalyst for highly selective hydroamination of alkynes.
    Lu Y; Wang Y; Li H; Li P; Feng X; Yamamoto Y; Bao M; Liu J
    RSC Adv; 2023 Jan; 13(5):3371-3376. PubMed ID: 36756435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold.
    Moskaleva LV; Röhe S; Wittstock A; Zielasek V; Klüner T; Neyman KM; Bäumer M
    Phys Chem Chem Phys; 2011 Mar; 13(10):4529-39. PubMed ID: 21264433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct amidation from alcohols and amines through a tandem oxidation process catalyzed by heterogeneous-polymer-incarcerated gold nanoparticles under aerobic conditions.
    Soulé JF; Miyamura H; Kobayashi S
    Chem Asian J; 2013 Nov; 8(11):2614-26. PubMed ID: 24166844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica.
    Shirman T; Lattimer J; Luneau M; Shirman E; Reece C; Aizenberg M; Madix RJ; Aizenberg J; Friend CM
    Chemistry; 2018 Feb; 24(8):1833-1837. PubMed ID: 28960528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative
    Yang S; Cho A; Cho JH; Kim BM
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupported nanoporous gold catalyst for highly selective hydrogenation of quinolines.
    Yan M; Jin T; Chen Q; Ho HE; Fujita T; Chen LY; Bao M; Chen MW; Asao N; Yamamoto Y
    Org Lett; 2013 Apr; 15(7):1484-7. PubMed ID: 23496325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.