These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2394665)

  • 1. Effects of surface tension and viscosity on airway reopening.
    Gaver DP; Samsel RW; Solway J
    J Appl Physiol (1985); 1990 Jul; 69(1):74-85. PubMed ID: 2394665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulmonary airway reopening: effects of non-Newtonian fluid viscosity.
    Low HT; Chew YT; Zhou CW
    J Biomech Eng; 1997 Aug; 119(3):298-308. PubMed ID: 9285343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental model investigation of the opening of a collapsed untethered pulmonary airway.
    Perun ML; Gaver DP
    J Biomech Eng; 1995 Aug; 117(3):245-53. PubMed ID: 8618375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening.
    Perun ML; Gaver DP
    J Appl Physiol (1985); 1995 Nov; 79(5):1717-28. PubMed ID: 8594034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of viscoelasticity in tube model of airway reopening. I. Nonnewtonian sols.
    Hsu SH; Strohl KP; Jamieson AM
    J Appl Physiol (1985); 1994 Jun; 76(6):2481-9. PubMed ID: 7928874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure.
    Halpern D; Grotberg JB
    J Biomech Eng; 1993 Aug; 115(3):271-7. PubMed ID: 8231142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of surface tension and intraluminal fluid on mechanics of small airways.
    Hill MJ; Wilson TA; Lambert RK
    J Appl Physiol (1985); 1997 Jan; 82(1):233-9. PubMed ID: 9029221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary-elastic instabilities of liquid-lined lung airways.
    Rosenzweig J; Jensen OE
    J Biomech Eng; 2002 Dec; 124(6):650-5. PubMed ID: 12596631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saliva production and surface tension: influences on patency of the passive upper airway.
    Lam JC; Kairaitis K; Verma M; Wheatley JR; Amis TC
    J Physiol; 2008 Nov; 586(22):5537-47. PubMed ID: 18818243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is airway closure caused by a liquid film instability?
    Kamm RD; Schroter RC
    Respir Physiol; 1989 Feb; 75(2):141-56. PubMed ID: 2711049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.
    Chen ZL; Song YL; Hu ZY; Zhang S; Chen YZ
    J Appl Physiol (1985); 2015 Aug; 119(3):190-201. PubMed ID: 26023222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between surface tension of upper airway lining liquid and upper airway collapsibility during sleep in obstructive sleep apnea hypopnea syndrome.
    Kirkness JP; Madronio M; Stavrinou R; Wheatley JR; Amis TC
    J Appl Physiol (1985); 2003 Nov; 95(5):1761-6. PubMed ID: 12857768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased surface tension of upper airway mucosal lining liquid increases upper airway patency in anaesthetised rabbits.
    Kirkness JP; Christenson HK; Garlick SR; Parikh R; Kairaitis K; Wheatley JR; Amis TC
    J Physiol; 2003 Mar; 547(Pt 2):603-11. PubMed ID: 12562967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air-liquid interfacial movement in models simulating airway reopening.
    Hsu SH; Hou CM
    Med Eng Phys; 1998 Nov; 20(8):558-64. PubMed ID: 9888233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of airway surface liquid on the forces on the pharyngeal wall: Experimental fluid-structure interaction study.
    Pirnar J; Širok B; Bombač A
    J Biomech; 2017 Oct; 63():117-124. PubMed ID: 28865707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillating drop/bubble tensiometry: effect of viscous forces on the measurement of interfacial tension.
    Freer EM; Wong H; Radke CJ
    J Colloid Interface Sci; 2005 Feb; 282(1):128-32. PubMed ID: 15576090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for a pump that drives circulation of pleural fluid.
    Butler JP; Huang J; Loring SH; Lai-Fook SJ; Wang PM; Wilson TA
    J Appl Physiol (1985); 1995 Jan; 78(1):23-9. PubMed ID: 7713817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
    Yalcin HC; Perry SF; Ghadiali SN
    J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of viscoelasticity in the tube model of airway reopening. II. Non-Newtonian gels and airway simulation.
    Hsu SH; Strohl KP; Haxhiu MA; Jamieson AM
    J Appl Physiol (1985); 1996 May; 80(5):1649-59. PubMed ID: 8727551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological interpretations based on lumped element models fit to respiratory impedance data: use of forward-inverse modeling.
    Lutchen KR; Costa KD
    IEEE Trans Biomed Eng; 1990 Nov; 37(11):1076-86. PubMed ID: 2276755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.