These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23947)

  • 1. Electrostatic interactions at charged lipid membranes. Measurement of surface pH with fluorescent lipoid pH indicators.
    Vaz WL; Nisksch A; Jähnig F
    Eur J Biochem; 1978 Feb; 83(1):299-305. PubMed ID: 23947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial pH at electrically charged lipid monolayers investigated by the lipoid pH-indicator method.
    Fromherz P; Masters B
    Biochim Biophys Acta; 1974 Aug; 356(3):270-5. PubMed ID: 4844172
    [No Abstract]   [Full Text] [Related]  

  • 3. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study.
    Galla HJ; Sackmann E
    Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure.
    Tyäuble H; Teubner M; Woolley P; Eibl H
    Biophys Chem; 1976 Jul; 4(4):319-42. PubMed ID: 8167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic behavior of fluorescent probes in lipid bilayer model membranes.
    Badley RA; Martin WG; Schneider H
    Biochemistry; 1973 Jan; 12(2):268-75. PubMed ID: 4683001
    [No Abstract]   [Full Text] [Related]  

  • 6. Electrostatic effects on lipid phase transitions: membrane structure and ionic environment.
    Träuble H; Eibl H
    Proc Natl Acad Sci U S A; 1974 Jan; 71(1):214-9. PubMed ID: 4521052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of surface charge density on valinomycin-K+ complex formation in model membranes.
    Caspers J; Landuyt-Caufriez M; Deleers M; Ruysschaert JM
    Biochim Biophys Acta; 1979 Jun; 554(1):23-38. PubMed ID: 582285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groups with polar characteristics can locate at both shallow and deep locations in membranes: the behavior of dansyl and related probes.
    Asuncion-Punzalan E; Kachel K; London E
    Biochemistry; 1998 Mar; 37(13):4603-11. PubMed ID: 9521780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface charge and the conductance of phospholipid membranes.
    McLaughlin SG; Szabo G; Eisenman G; Ciani SM
    Proc Natl Acad Sci U S A; 1970 Nov; 67(3):1268-75. PubMed ID: 5274456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.
    Voinov MA; Smirnov AI
    Methods Enzymol; 2015; 564():191-217. PubMed ID: 26477252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers.
    Plasencia I; Cruz A; Casals C; Pérez-Gil J
    Biochem J; 2001 Nov; 359(Pt 3):651-9. PubMed ID: 11672440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing biomembrane interfacial potential and pH profiles with a new type of float-like fluorophores positioned at varying distance from the membrane surface.
    Kraayenhof R; Sterk GJ; Sang HW
    Biochemistry; 1993 Sep; 32(38):10057-66. PubMed ID: 8399132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH and monovalent cations on the ionization state of phosphatidylglycerol in monolayers. An experimental (surface potential) and theoretical (Gouy-Chapman) approach.
    Lakhdar-Ghazal F; Tichadou JL; Tocanne JF
    Eur J Biochem; 1983 Aug; 134(3):531-7. PubMed ID: 6884345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface potential and the interaction of weakly acidic uncouplers of oxidative phosphorylation with liposomes and mitochondria.
    Bakker EP; Arents JC; Hoebe JP; Terada H
    Biochim Biophys Acta; 1975 Jun; 387(3):491-506. PubMed ID: 237541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.
    Kolber MA; Haynes DH
    Biophys J; 1981 Nov; 36(2):369-91. PubMed ID: 6796150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic interactions at charged lipid membranes. Electrostatically induced tilt.
    Jähnig F; Harlos K; Vogel H; Eibl H
    Biochemistry; 1979 Apr; 18(8):1459-68. PubMed ID: 34426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology.
    Ghazvini S; Alonso R; Alhakamy N; Dhar P
    Langmuir; 2018 Jan; 34(3):1159-1170. PubMed ID: 29019691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the flow properties of phospholipid dispersions induced by procaine hydrochloride. Effect of pH and temperature.
    Arias C; López-Cabarcos E; Galera P; Rueda C
    Farmaco; 2001; 56(5-7):533-9. PubMed ID: 11482791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of ellipticine with model or natural membranes. A spectrophotometric study.
    Terce F; Tocanne JF; Laneelle G
    Eur J Biochem; 1982 Jun; 125(1):203-7. PubMed ID: 6286310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.