BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2394703)

  • 1. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylprolylalanine in renal brush-border membrane vesicles.
    Tiruppathi C; Ganapathy V; Leibach FH
    J Biol Chem; 1990 Sep; 265(25):14870-4. PubMed ID: 2394703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for tripeptide-proton symport in renal brush border membrane vesicles. Studies in a novel rat strain with a genetic absence of dipeptidyl peptidase IV.
    Tiruppathi C; Ganapathy V; Leibach FH
    J Biol Chem; 1990 Feb; 265(4):2048-53. PubMed ID: 1967607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of peptides in renal brush border membrane vesicles. Suitability of 125I-labelled tyrosyl peptides as substrates.
    Tiruppathi C; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1991 Oct; 1069(1):14-20. PubMed ID: 1681904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of glycine from L-alanylglycine into renal brush border vesicles.
    Welch CL; Campbell BJ
    J Membr Biol; 1980; 54(1):39-50. PubMed ID: 7205942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple carriers for dipeptide transport: carrier-mediated transport of glycyl-L-proline in renal BBMV.
    Skopicki HA; Fisher K; Zikos D; Bloch R; Flouret G; Peterson DR
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F670-8. PubMed ID: 1928378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains.
    Tiruppathi C; Miyamoto Y; Ganapathy V; Roesel RA; Whitford GM; Leibach FH
    J Biol Chem; 1990 Jan; 265(3):1476-83. PubMed ID: 1967253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton/solute cotransport in rat kidney brush-border membrane vesicles: relative importance to both D-glucose and peptide transport.
    Vayro S; Simmons NL
    Biochim Biophys Acta; 1996 Feb; 1279(1):111-7. PubMed ID: 8624355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of dipeptidyl peptidase IV in uptake of peptide nitrogen from beta-casomorphin in rabbit renal BBMV.
    Miyamoto Y; Ganapathy V; Barlas A; Neubert K; Barth A; Leibach FH
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F670-7. PubMed ID: 2882693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential.
    Daniel H; Morse EL; Adibi SA
    J Biol Chem; 1991 Oct; 266(30):19917-24. PubMed ID: 1939055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane.
    Aito-Inoue M; Lackeyram D; Fan MZ; Sato K; Mine Y
    J Pept Sci; 2007 Jul; 13(7):468-74. PubMed ID: 17554807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles.
    Ganapathy V; Burckhardt G; Leibach FH
    J Biol Chem; 1984 Jul; 259(14):8954-9. PubMed ID: 6746633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes.
    Takahashi K; Nakamura N; Terada T; Okano T; Futami T; Saito H; Inui KI
    J Pharmacol Exp Ther; 1998 Aug; 286(2):1037-42. PubMed ID: 9694966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective effect of zinc on uphill transport of oligopeptides into kidney brush border membrane vesicles.
    Daniel H; Adibi SA
    FASEB J; 1995 Aug; 9(11):1112-7. PubMed ID: 7649411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the small intestinal uptake of phenylalanylglycine via a H+/oligopeptide transport system by chemical modification with fatty acids.
    Fujita T; Morishita Y; Ito H; Kuribayashi D; Yamamoto A; Muranishi S
    Life Sci; 1997; 61(25):2455-65. PubMed ID: 9416764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier-mediated transport of pyroglutamyl-histidine in renal brush border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Bloch R; Kubillus S; Peterson DR
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C822-7. PubMed ID: 3202151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of thiol groups in the function of the dipeptide/proton cotransport system in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1989 Jan; 978(1):25-31. PubMed ID: 2536554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplicity of the H+-dependent transport mechanism of dipeptide and anionic beta-lactam antibiotic ceftibuten in rat intestinal brush-border membrane.
    Iseki K; Sugawara M; Sato K; Naasani I; Hayakawa T; Kobayashi M; Miyazaki K
    J Pharmacol Exp Ther; 1999 Apr; 289(1):66-71. PubMed ID: 10086988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.