These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2394724)

  • 1. Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination.
    Binder BM; Biernbaum MS; Bownds MD
    J Biol Chem; 1990 Sep; 265(25):15333-40. PubMed ID: 2394724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transducin activation in electropermeabilized frog rod outer segments is highly amplified, and a portion equivalent to phosphodiesterase remains membrane-bound.
    Gray-Keller MP; Biernbaum MS; Bownds MD
    J Biol Chem; 1990 Sep; 265(25):15323-32. PubMed ID: 2168406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules.
    Aton BR
    Biochemistry; 1986 Feb; 25(3):677-80. PubMed ID: 3955023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dim background light and Cerenkov radiation from 32P block reversal of rhodopsin phosphorylation in intact frog retinal rods.
    Biernbaum MS; Binder BM; Bownds MD
    Vis Neurosci; 1991 Nov; 7(5):499-503. PubMed ID: 1764418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of intracellular cyclic GMP concentration by light and calcium in electropermeabilized rod photoreceptors.
    Coccia VJ; Cote RH
    J Gen Physiol; 1994 Jan; 103(1):67-86. PubMed ID: 8169598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of rhodopsin phosphorylation by guanine nucleotides in rod outer segments.
    Swarup G; Garbers DL
    Biochemistry; 1983 Mar; 22(5):1102-6. PubMed ID: 6301538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of non-bleached rhodopsin in intact retinas and living frogs.
    Binder BM; O'Connor TM; Bownds MD; Arshavsky VY
    J Biol Chem; 1996 Aug; 271(33):19826-30. PubMed ID: 8702691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of light-activated phosphorylation in frog photoreceptor membranes.
    Miller JA; Paulsen R; Bownds MD
    Biochemistry; 1977 Jun; 16(12):2633-9. PubMed ID: 302121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light induced interaction between rhodopsin and GTP dependent processes in rod outer segments--I. Kinetic analyses of light scattering transients.
    Gupta BD; Deshpande S; Jones RE; Borys TJ; Abrahamson EW
    Photochem Photobiol; 1986 May; 43(5):529-33. PubMed ID: 3737703
    [No Abstract]   [Full Text] [Related]  

  • 11. Phosphorylation and dephosphorylation of frog rod outer segment membranes as part of the visual process.
    Miller JA; Paulsen R
    J Biol Chem; 1975 Jun; 250(12):4427-32. PubMed ID: 1079805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced dephosphorylation of two proteins in frog rod outer segments: influence of cyclic nucleotides and calcium.
    Polans AS; Hermolin J; Bownds MD
    J Gen Physiol; 1979 Nov; 74(5):595-613. PubMed ID: 229195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodopsin-to-metarhodopsin II transition triggers amplified changes in cytosol ATP and ADP in intact retinal rod outer segments.
    Zuckerman R; Schmidt GJ; Dacko SM
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6414-8. PubMed ID: 6983071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two forms of intermediates of frog rhodopsin in rod outer segments.
    Sasaki N; Tokunaga F; Yoshizawa T
    Biochim Biophys Acta; 1983 Jan; 722(1):80-7. PubMed ID: 6600624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced decreases in cGMP concentration precede changes in membrane permeability in frog rod photoreceptors.
    Cote RH; Biernbaum MS; Nicol GD; Bownds MD
    J Biol Chem; 1984 Aug; 259(15):9635-41. PubMed ID: 6086642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light stimulates phosphorylation of two large membrane proteins in frog photoreceptors.
    Szuts EZ
    Biochemistry; 1985 Jul; 24(15):4176-84. PubMed ID: 3876846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assay of phosphorylation of rhodopsin in vitro and in vivo.
    Kühn H; Wilden U
    Methods Enzymol; 1982; 81():489-96. PubMed ID: 7047991
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Photo-induced release of calcium ions frog retina photoreceptor membranes in media of different ionic composition].
    Bykov KA; Tomilin NV
    Fiziol Zh SSSR Im I M Sechenova; 1981 May; 67(5):652-6. PubMed ID: 6974654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes.
    Vandenberg CA; Montal M
    Biochemistry; 1984 May; 23(11):2347-52. PubMed ID: 6089868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.