These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 23947397)

  • 1. Uncovering spider silk nanocrystalline variations that facilitate wind-induced mechanical property changes.
    Blamires SJ; Wu CC; Wu CL; Sheu HS; Tso IM
    Biomacromolecules; 2013 Oct; 14(10):3484-90. PubMed ID: 23947397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind induces variations in spider web geometry and sticky spiral droplet volume.
    Wu CC; Blamires SJ; Wu CL; Tso IM
    J Exp Biol; 2013 Sep; 216(Pt 17):3342-9. PubMed ID: 23737558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey type, vibrations and handling interactively influence spider silk expression.
    Blamires SJ; Chao IC; Tso IM
    J Exp Biol; 2010 Nov; 213(Pt 22):3906-10. PubMed ID: 21037070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-secretion processing influences spider silk performance.
    Blamires SJ; Wu CL; Blackledge TA; Tso IM
    J R Soc Interface; 2012 Oct; 9(75):2479-87. PubMed ID: 22628213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical performance of spider silk is robust to nutrient-mediated changes in protein composition.
    Blamires SJ; Liao CP; Chang CK; Chuang YC; Wu CL; Blackledge TA; Sheu HS; Tso IM
    Biomacromolecules; 2015 Apr; 16(4):1218-25. PubMed ID: 25764227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure.
    Benamú M; Lacava M; García LF; Santana M; Fang J; Wang X; Blamires SJ
    Chemosphere; 2017 Aug; 181():241-249. PubMed ID: 28445817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale mechanisms of nutritionally induced property variation in spider silks.
    Blamires SJ; Nobbs M; Martens PJ; Tso IM; Chuang WT; Chang CK; Sheu HS
    PLoS One; 2018; 13(2):e0192005. PubMed ID: 29390013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The variability and interdependence of spider viscid line tensile properties.
    Perea GB; Plaza GR; Guinea GV; Elices M; Velasco B; Pérez-Rigueiro J
    J Exp Biol; 2013 Dec; 216(Pt 24):4722-8. PubMed ID: 24072798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential origin in the high performance properties of orb spider dragline silk.
    Blackledge TA; Pérez-Rigueiro J; Plaza GR; Perea B; Navarro A; Guinea GV; Elices M
    Sci Rep; 2012; 2():782. PubMed ID: 23110251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE; Creager MS; Lewis RV
    Biomed Sci Instrum; 2005; 41():1-6. PubMed ID: 15850073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of forced silking.
    Ortlepp CS; Gosline JM
    Biomacromolecules; 2004; 5(3):727-31. PubMed ID: 15132653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.
    Motriuk-Smith D; Lewis RV
    Biomed Sci Instrum; 2004; 40():64-9. PubMed ID: 15133936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization.
    Guinea GV; Elices M; Plaza GR; Perea GB; Daza R; Riekel C; Agulló-Rueda F; Hayashi C; Zhao Y; Pérez-Rigueiro J
    Biomacromolecules; 2012 Jul; 13(7):2087-98. PubMed ID: 22668322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of loading rate on mechanical properties and fracture morphology of spider silk.
    Hudspeth M; Nie X; Chen W; Lewis R
    Biomacromolecules; 2012 Aug; 13(8):2240-6. PubMed ID: 22780301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled semi-crystallinity at parallel β-sheet nanocrystal interfaces in clustered MaSp1 (spider silk) proteins.
    Sintya E; Alam P
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():366-71. PubMed ID: 26478322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hidden link between supercontraction and mechanical behavior of spider silks.
    Elices M; Plaza GR; Pérez-Rigueiro J; Guinea GV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):658-69. PubMed ID: 21565714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.