These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2394743)

  • 1. Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase. Steady state kinetic analysis and comparison to the mechanism of bromination.
    Everett RR; Soedjak HS; Butler A
    J Biol Chem; 1990 Sep; 265(26):15671-9. PubMed ID: 2394743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase from Macrocystis pyrifera and Fucus distichus: steady state kinetic analysis and comparison to the mechanism of V-BrPO from Ascophyllum nodosum.
    Soedjak HS; Butler A
    Biochim Biophys Acta; 1991 Aug; 1079(1):1-7. PubMed ID: 1888757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies.
    Soedjak HS; Walker JV; Butler A
    Biochemistry; 1995 Oct; 34(39):12689-96. PubMed ID: 7548021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction mechanism of the novel vanadium-bromoperoxidase. A steady-state kinetic analysis.
    de Boer E; Wever R
    J Biol Chem; 1988 Sep; 263(25):12326-32. PubMed ID: 3410844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines.
    Soedjak HS; Butler A
    Biochemistry; 1990 Aug; 29(34):7974-81. PubMed ID: 2261454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compound I formation is a partially rate-limiting process in chloroperoxidase-catalyzed bromination reactions.
    Libby RD; Rotberg NS
    J Biol Chem; 1990 Sep; 265(25):14808-11. PubMed ID: 2394699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the oxidized states of bromoperoxidase.
    Manthey JA; Hager LP
    J Biol Chem; 1985 Aug; 260(17):9654-9. PubMed ID: 2991256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haloperoxidase activity of Phanerochaete chrysosporium lignin peroxidases H2 and H8.
    Farhangrazi ZS; Sinclair R; Yamazaki I; Powers LS
    Biochemistry; 1992 Nov; 31(44):10763-8. PubMed ID: 1420193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Purification and characterization of a bromoperoxidase from Gracilaria lemaneiformis].
    Li H; Jin Y; Zhang W; Yu X; Zhang J; Wu P
    Sheng Wu Gong Cheng Xue Bao; 2008 Apr; 24(4):622-6. PubMed ID: 18616173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of vanadium bromoperoxidase: formation of 2-oxohistidine.
    Meister Winter GE; Butler A
    Biochemistry; 1996 Sep; 35(36):11805-11. PubMed ID: 8794762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of vanadium-containing bromoperoxidases.
    Wever R; Krenn BE; De Boer E; Offenberg H; Plat H
    Prog Clin Biol Res; 1988; 274():477-93. PubMed ID: 3406034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a radical mechanism of halogenation of monochlorodimedone catalyzed by chloroperoxidase.
    Griffin BW; Ashley PL
    Arch Biochem Biophys; 1984 Aug; 233(1):188-96. PubMed ID: 6540548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions.
    Bakkenist AR; de Boer JE; Plat H; Wever R
    Biochim Biophys Acta; 1980 Jun; 613(2):337-48. PubMed ID: 6255998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. Evidence for singlet oxygen production.
    Everett RR; Kanofsky JR; Butler A
    J Biol Chem; 1990 Mar; 265(9):4908-14. PubMed ID: 2318874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Spanish broom peroxidase obeys a Ping-Pong Bi-Bi mechanism with competitive inhibition by substrates.
    PĂ©rez Galende P; Hidalgo Cuadrado N; Kostetsky EY; Roig MG; Villar E; Shnyrov VL; Kennedy JF
    Int J Biol Macromol; 2015 Nov; 81():1005-11. PubMed ID: 26416239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytochrome c peroxidase-catalyzed oxidation of ferrocytochrome c by hydrogen peroxide. Steady state kinetic mechanism.
    Kang DS; Erman JE
    J Biol Chem; 1982 Nov; 257(21):12775-9. PubMed ID: 6290481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis.
    Carter JN; Beatty KE; Simpson MT; Butler A
    J Inorg Biochem; 2002 Jul; 91(1):59-69. PubMed ID: 12121762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haloperoxidase activity of manganese peroxidase from Phanerochaete chrysosporium.
    Sheng D; Gold MH
    Arch Biochem Biophys; 1997 Sep; 345(1):126-34. PubMed ID: 9281319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.