These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 23947433)
1. Bisphosphonate-linked hyaluronic acid hydrogel sequesters and enzymatically releases active bone morphogenetic protein-2 for induction of osteogenic differentiation. Hulsart-Billström G; Yuen PK; Marsell R; Hilborn J; Larsson S; Ossipov D Biomacromolecules; 2013 Sep; 14(9):3055-63. PubMed ID: 23947433 [TBL] [Abstract][Full Text] [Related]
2. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Kang SW; Kim JS; Park KS; Cha BH; Shim JH; Kim JY; Cho DW; Rhie JW; Lee SH Bone; 2011 Feb; 48(2):298-306. PubMed ID: 20870047 [TBL] [Abstract][Full Text] [Related]
3. Multivalent ion-based in situ gelling polysaccharide hydrogel as an injectable bone graft. Jung SW; Byun JH; Oh SH; Kim TH; Park JS; Rho GJ; Lee JH Carbohydr Polym; 2018 Jan; 180():216-225. PubMed ID: 29103499 [TBL] [Abstract][Full Text] [Related]
4. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Kisiel M; Martino MM; Ventura M; Hubbell JA; Hilborn J; Ossipov DA Biomaterials; 2013 Jan; 34(3):704-12. PubMed ID: 23103154 [TBL] [Abstract][Full Text] [Related]
5. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro. Kootala S; Zhang Y; Ghalib S; Tolmachev V; Hilborn J; Ossipov DA Biomater Sci; 2016 Feb; 4(2):250-4. PubMed ID: 26610690 [TBL] [Abstract][Full Text] [Related]
6. Design of hydrogels to stabilize and enhance bone morphogenetic protein activity by heparin mimetics. Kim S; Cui ZK; Kim PJ; Jung LY; Lee M Acta Biomater; 2018 May; 72():45-54. PubMed ID: 29597024 [TBL] [Abstract][Full Text] [Related]
7. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Kim J; Kim IS; Cho TH; Lee KB; Hwang SJ; Tae G; Noh I; Lee SH; Park Y; Sun K Biomaterials; 2007 Apr; 28(10):1830-7. PubMed ID: 17208295 [TBL] [Abstract][Full Text] [Related]
8. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Moeinzadeh S; Barati D; He X; Jabbari E Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902 [TBL] [Abstract][Full Text] [Related]
9. Bone reservoir: Injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. Martínez-Sanz E; Ossipov DA; Hilborn J; Larsson S; Jonsson KB; Varghese OP J Control Release; 2011 Jun; 152(2):232-40. PubMed ID: 21315118 [TBL] [Abstract][Full Text] [Related]
10. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983 [TBL] [Abstract][Full Text] [Related]
11. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bae MS; Ohe JY; Lee JB; Heo DN; Byun W; Bae H; Kwon YD; Kwon IK Bone; 2014 Feb; 59():189-98. PubMed ID: 24291420 [TBL] [Abstract][Full Text] [Related]
12. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Feng Q; Lin S; Zhang K; Dong C; Wu T; Huang H; Yan X; Zhang L; Li G; Bian L Acta Biomater; 2017 Apr; 53():329-342. PubMed ID: 28193542 [TBL] [Abstract][Full Text] [Related]
13. Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells. Grab AL; Seckinger A; Horn P; Hose D; Cavalcanti-Adam EA Acta Biomater; 2019 Sep; 96():258-270. PubMed ID: 31302300 [TBL] [Abstract][Full Text] [Related]
14. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. Zhou X; Feng W; Qiu K; Chen L; Wang W; Nie W; Mo X; He C ACS Appl Mater Interfaces; 2015 Jul; 7(29):15777-89. PubMed ID: 26133753 [TBL] [Abstract][Full Text] [Related]
15. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Zhang K; Lin S; Feng Q; Dong C; Yang Y; Li G; Bian L Acta Biomater; 2017 Dec; 64():389-400. PubMed ID: 28963020 [TBL] [Abstract][Full Text] [Related]
17. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. Holloway JL; Ma H; Rai R; Burdick JA J Control Release; 2014 Oct; 191():63-70. PubMed ID: 24905414 [TBL] [Abstract][Full Text] [Related]
18. Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes - the osteopromotive principle revisited. Wehrhan F; Amann K; Molenberg A; Lutz R; Neukam FW; Schlegel KA Clin Oral Implants Res; 2013 Aug; 24(8):910-20. PubMed ID: 23865504 [TBL] [Abstract][Full Text] [Related]
19. Hollow calcium phosphate microcarriers for bone regeneration: in vitro osteoproduction and ex vivo mechanical assessment. Santoni BG; Pluhar GE; Motta T; Wheeler DL Biomed Mater Eng; 2007; 17(5):277-89. PubMed ID: 17851170 [TBL] [Abstract][Full Text] [Related]
20. Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects. Park HJ; Jin Y; Shin J; Yang K; Lee C; Yang HS; Cho SW Biomacromolecules; 2016 Jun; 17(6):1939-48. PubMed ID: 27112904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]