BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23947646)

  • 1. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in binding free energies calculations: QM/MM-based free energy perturbation method for drug design.
    Rathore RS; Sumakanth M; Reddy MS; Reddanna P; Rao AA; Erion MD; Reddy MR
    Curr Pharm Des; 2013; 19(26):4674-86. PubMed ID: 23260025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards predictive ligand design with free-energy based computational methods?
    Foloppe N; Hubbard R
    Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations?
    Hao D; He X; Ji B; Zhang S; Wang J
    J Chem Inf Model; 2020 Dec; 60(12):6624-6633. PubMed ID: 33213150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative assessment of QM-based and MM-based models for prediction of protein-ligand binding affinity trends.
    Maier S; Thapa B; Erickson J; Raghavachari K
    Phys Chem Chem Phys; 2022 Jun; 24(23):14525-14537. PubMed ID: 35661842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design.
    Wang E; Sun H; Wang J; Wang Z; Liu H; Zhang JZH; Hou T
    Chem Rev; 2019 Aug; 119(16):9478-9508. PubMed ID: 31244000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the impact of binding free energy and kinetics calculations in modern drug discovery.
    Adediwura VA; Koirala K; Do HN; Wang J; Miao Y
    Expert Opin Drug Discov; 2024 Jun; 19(6):671-682. PubMed ID: 38722032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions.
    Singh N; Warshel A
    Proteins; 2010 May; 78(7):1705-23. PubMed ID: 20186976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of protein-ligand binding affinities.
    Gilson MK; Zhou HX
    Annu Rev Biophys Biomol Struct; 2007; 36():21-42. PubMed ID: 17201676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach.
    Reddy MR; Erion MD
    J Am Chem Soc; 2001 Jul; 123(26):6246-52. PubMed ID: 11427047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking.
    Hou T; Wang J; Li Y; Wang W
    J Comput Chem; 2011 Apr; 32(5):866-77. PubMed ID: 20949517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions.
    Mishra SK; Koča J
    J Phys Chem B; 2018 Aug; 122(34):8113-8121. PubMed ID: 30084252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes.
    Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY
    Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodating protein flexibility for structure-based drug design.
    Lin JH
    Curr Top Med Chem; 2011; 11(2):171-8. PubMed ID: 20939792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.